Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229028944> ?p ?o ?g. }
- W4229028944 endingPage "58" @default.
- W4229028944 startingPage "35" @default.
- W4229028944 abstract "To address complex single objective global optimization problems, a new Level-Based Learning Differential Evolution (LBLDE) is developed in this study. In this approach, the whole population is sorted from the best to the worst at the beginning of each generation. Then, the population is partitioned into multiple levels, and different levels are used to exert different functions. In each level, a control parameter is used to select excellent exemplars from upper levels for learning. In this case, the poorer individuals can choose more learning exemplars to improve their exploration ability, and excellent individuals can directly learn from the several best individuals to improve the quality of solutions. To accelerate the convergence speed, a difference vector selection method based on the level is developed. Furthermore, specific crossover rates are assigned to individuals at the lowest level to guarantee that the population can continue to update during the later evolutionary process. A comprehensive experiment is organized and conducted to obtain a deep insight into LBLDE and demonstrates the superiority of LBLDE in comparison with seven peer DE variants." @default.
- W4229028944 created "2022-05-08" @default.
- W4229028944 creator A5001242154 @default.
- W4229028944 creator A5011086593 @default.
- W4229028944 creator A5023816035 @default.
- W4229028944 creator A5037378054 @default.
- W4229028944 creator A5042789966 @default.
- W4229028944 creator A5072294864 @default.
- W4229028944 date "2022-03-01" @default.
- W4229028944 modified "2023-10-14" @default.
- W4229028944 title "Differential Evolution with Level-Based Learning Mechanism" @default.
- W4229028944 cites W1500783943 @default.
- W4229028944 cites W1595159159 @default.
- W4229028944 cites W178010734 @default.
- W4229028944 cites W1976195874 @default.
- W4229028944 cites W1988847487 @default.
- W4229028944 cites W2009006398 @default.
- W4229028944 cites W2012771980 @default.
- W4229028944 cites W2017065346 @default.
- W4229028944 cites W2018188932 @default.
- W4229028944 cites W2028031385 @default.
- W4229028944 cites W2028261435 @default.
- W4229028944 cites W2042253843 @default.
- W4229028944 cites W2067508429 @default.
- W4229028944 cites W2083281224 @default.
- W4229028944 cites W2091334196 @default.
- W4229028944 cites W2093862622 @default.
- W4229028944 cites W2105745339 @default.
- W4229028944 cites W2117250519 @default.
- W4229028944 cites W2134154181 @default.
- W4229028944 cites W2134285040 @default.
- W4229028944 cites W2137340504 @default.
- W4229028944 cites W2144051602 @default.
- W4229028944 cites W2153260109 @default.
- W4229028944 cites W2154349682 @default.
- W4229028944 cites W2155529731 @default.
- W4229028944 cites W2162145193 @default.
- W4229028944 cites W2166348281 @default.
- W4229028944 cites W2310612427 @default.
- W4229028944 cites W2557366299 @default.
- W4229028944 cites W2565654088 @default.
- W4229028944 cites W2593807586 @default.
- W4229028944 cites W2621129539 @default.
- W4229028944 cites W2621266183 @default.
- W4229028944 cites W2726592172 @default.
- W4229028944 cites W2734878724 @default.
- W4229028944 cites W2742431210 @default.
- W4229028944 cites W2745449279 @default.
- W4229028944 cites W2750761106 @default.
- W4229028944 cites W2753899746 @default.
- W4229028944 cites W2757312341 @default.
- W4229028944 cites W2757662287 @default.
- W4229028944 cites W2758008099 @default.
- W4229028944 cites W2768064490 @default.
- W4229028944 cites W2790343644 @default.
- W4229028944 cites W2797204974 @default.
- W4229028944 cites W2809890364 @default.
- W4229028944 cites W2903569983 @default.
- W4229028944 cites W2921201798 @default.
- W4229028944 cites W2921754689 @default.
- W4229028944 cites W2944706072 @default.
- W4229028944 cites W2955324133 @default.
- W4229028944 cites W2955827290 @default.
- W4229028944 cites W2962878096 @default.
- W4229028944 cites W2963115819 @default.
- W4229028944 cites W2969625972 @default.
- W4229028944 cites W3003371093 @default.
- W4229028944 cites W3006746595 @default.
- W4229028944 cites W3013482090 @default.
- W4229028944 cites W3040469843 @default.
- W4229028944 cites W3041966174 @default.
- W4229028944 cites W3086427656 @default.
- W4229028944 cites W3094311502 @default.
- W4229028944 cites W3109587892 @default.
- W4229028944 cites W3113228261 @default.
- W4229028944 cites W3127133437 @default.
- W4229028944 cites W3129589803 @default.
- W4229028944 cites W3159502203 @default.
- W4229028944 cites W3162017678 @default.
- W4229028944 cites W3188785484 @default.
- W4229028944 cites W3210984283 @default.
- W4229028944 cites W4206918614 @default.
- W4229028944 cites W54135564 @default.
- W4229028944 doi "https://doi.org/10.23919/csms.2022.0004" @default.
- W4229028944 hasPublicationYear "2022" @default.
- W4229028944 type Work @default.
- W4229028944 citedByCount "7" @default.
- W4229028944 countsByYear W42290289442022 @default.
- W4229028944 countsByYear W42290289442023 @default.
- W4229028944 crossrefType "journal-article" @default.
- W4229028944 hasAuthorship W4229028944A5001242154 @default.
- W4229028944 hasAuthorship W4229028944A5011086593 @default.
- W4229028944 hasAuthorship W4229028944A5023816035 @default.
- W4229028944 hasAuthorship W4229028944A5037378054 @default.
- W4229028944 hasAuthorship W4229028944A5042789966 @default.
- W4229028944 hasAuthorship W4229028944A5072294864 @default.
- W4229028944 hasBestOaLocation W42290289441 @default.
- W4229028944 hasConcept C111472728 @default.