Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229030147> ?p ?o ?g. }
- W4229030147 endingPage "1277" @default.
- W4229030147 startingPage "1262" @default.
- W4229030147 abstract "The past two decades have witnessed a rapid emergence of interest in mechanochemistry-chemical and materials reactivity achieved or sustained by the action of mechanical force-which has led to application of mechanochemistry to almost all areas of modern chemical and materials synthesis: from organic, inorganic, and organometallic chemistry to enzymatic reactions, formation of metal-organic frameworks, hybrid perovskites, and nanoparticle-based materials. The recent success of mechanochemistry by ball milling has also raised questions about the underlying mechanisms and has led to the realization that the rational development and effective harnessing of mechanochemical reactivity for cleaner and more efficient chemical manufacturing will critically depend on establishing a mechanistic understanding of these reactions. Despite their long history, the development of such a knowledge framework for mechanochemical reactions is still incomplete. This is in part due to the, until recently, unsurmountable challenge of directly observing transformations taking place in a rapidly oscillating or rotating milling vessel, with the sample being under the continuous impact of milling media. A transformative change in mechanistic studies of milling reactions was recently introduced through the first two methodologies for real-time in situ monitoring based on synchrotron powder X-ray diffraction and Raman spectroscopy. Introduced in 2013 and 2014, the two new techniques have inspired a period of tremendous method development, resulting also in new techniques for mechanistic mechanochemical studies that are based on temperature and/or pressure monitoring, extended X-ray fine structure (EXAFS), and, latest, nuclear magnetic resonance (NMR) spectroscopy. The new technologies available for real-time monitoring have now inspired the development of experimental strategies and advanced data analysis approaches for the identification and quantification of short-lived reaction intermediates, the development of new mechanistic models, as well as the emergence of more complex monitoring methodologies based on two or three simultaneous monitoring approaches. The use of these new opportunities has, in less than a decade, enabled the first real-time observations of mechanochemical reaction kinetics and the first studies of how the presence of additives, or other means of modifying the mechanochemical reaction, influence reaction rates and pathways. These studies have revealed multistep reaction mechanisms, enabled the identification of autocatalysis, as well as identified molecules and materials that have previously not been known or have even been considered not possible to synthesize through conventional approaches. Mechanistic studies through in situ powder X-ray diffraction (PXRD) and Raman spectroscopy have highlighted the formation of supramolecular complexes (for example, cocrystals) as critical intermediates in organic and metal-organic synthesis and have also been combined with isotope labeling strategies to provide a deeper insight into mechanochemical reaction mechanisms and atomic and molecular dynamics under milling conditions. This Account provides an overview of this exciting, rapidly evolving field by presenting the development and concepts behind the new methodologies for real-time in situ monitoring of mechanochemical reactions, outlining key advances in mechanistic understanding of mechanochemistry, and presenting selected studies important for pushing forward the boundaries of measurement techniques, data analysis, and mapping of reaction mechanisms." @default.
- W4229030147 created "2022-05-08" @default.
- W4229030147 creator A5003062408 @default.
- W4229030147 creator A5052153837 @default.
- W4229030147 creator A5066337275 @default.
- W4229030147 creator A5088974934 @default.
- W4229030147 date "2022-04-21" @default.
- W4229030147 modified "2023-10-18" @default.
- W4229030147 title "Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time<i>In Situ</i>Monitoring" @default.
- W4229030147 cites W1893570807 @default.
- W4229030147 cites W1970397800 @default.
- W4229030147 cites W1974658206 @default.
- W4229030147 cites W1974777766 @default.
- W4229030147 cites W1992791744 @default.
- W4229030147 cites W1998663933 @default.
- W4229030147 cites W2015173882 @default.
- W4229030147 cites W2030898683 @default.
- W4229030147 cites W2036457967 @default.
- W4229030147 cites W2053585042 @default.
- W4229030147 cites W2064998085 @default.
- W4229030147 cites W2068398684 @default.
- W4229030147 cites W2071964185 @default.
- W4229030147 cites W2078251402 @default.
- W4229030147 cites W2078444809 @default.
- W4229030147 cites W2080184104 @default.
- W4229030147 cites W2087389989 @default.
- W4229030147 cites W2091688378 @default.
- W4229030147 cites W2097196087 @default.
- W4229030147 cites W2104147964 @default.
- W4229030147 cites W2107576353 @default.
- W4229030147 cites W2107632533 @default.
- W4229030147 cites W2114293526 @default.
- W4229030147 cites W2120123878 @default.
- W4229030147 cites W2121584502 @default.
- W4229030147 cites W2125829268 @default.
- W4229030147 cites W2127749412 @default.
- W4229030147 cites W2129235999 @default.
- W4229030147 cites W2132228897 @default.
- W4229030147 cites W2151898680 @default.
- W4229030147 cites W2166466712 @default.
- W4229030147 cites W2217296958 @default.
- W4229030147 cites W2273613831 @default.
- W4229030147 cites W2285558057 @default.
- W4229030147 cites W2309087841 @default.
- W4229030147 cites W2565783413 @default.
- W4229030147 cites W2570300533 @default.
- W4229030147 cites W2595833186 @default.
- W4229030147 cites W2613187654 @default.
- W4229030147 cites W2614941360 @default.
- W4229030147 cites W2616998939 @default.
- W4229030147 cites W2620283829 @default.
- W4229030147 cites W2653442755 @default.
- W4229030147 cites W2766345222 @default.
- W4229030147 cites W2769439935 @default.
- W4229030147 cites W2784848174 @default.
- W4229030147 cites W2788079799 @default.
- W4229030147 cites W2793921591 @default.
- W4229030147 cites W2809400352 @default.
- W4229030147 cites W2887738251 @default.
- W4229030147 cites W2899440821 @default.
- W4229030147 cites W2907149813 @default.
- W4229030147 cites W2908483337 @default.
- W4229030147 cites W2909336725 @default.
- W4229030147 cites W2913345881 @default.
- W4229030147 cites W2928430351 @default.
- W4229030147 cites W2979798662 @default.
- W4229030147 cites W2983902613 @default.
- W4229030147 cites W2993303418 @default.
- W4229030147 cites W2997020383 @default.
- W4229030147 cites W3004376377 @default.
- W4229030147 cites W3006576610 @default.
- W4229030147 cites W3012092766 @default.
- W4229030147 cites W3035000109 @default.
- W4229030147 cites W3046897300 @default.
- W4229030147 cites W3047015739 @default.
- W4229030147 cites W3048730513 @default.
- W4229030147 cites W3074065752 @default.
- W4229030147 cites W3097236580 @default.
- W4229030147 cites W3102478926 @default.
- W4229030147 cites W3131737776 @default.
- W4229030147 cites W3145909399 @default.
- W4229030147 cites W3155473964 @default.
- W4229030147 cites W3159884443 @default.
- W4229030147 cites W3162658408 @default.
- W4229030147 cites W3164088737 @default.
- W4229030147 cites W3170265138 @default.
- W4229030147 cites W3196839856 @default.
- W4229030147 cites W3208925812 @default.
- W4229030147 cites W3209619101 @default.
- W4229030147 cites W3217063446 @default.
- W4229030147 cites W4206029878 @default.
- W4229030147 cites W4206539354 @default.
- W4229030147 cites W4210788912 @default.
- W4229030147 cites W4299882123 @default.
- W4229030147 cites W2078880733 @default.
- W4229030147 doi "https://doi.org/10.1021/acs.accounts.2c00062" @default.
- W4229030147 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35446551" @default.
- W4229030147 hasPublicationYear "2022" @default.