Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229031330> ?p ?o ?g. }
- W4229031330 abstract "Orphan gene play an important role in the environmental stresses of many species and their identification is a critical step to understand biological functions. Moso bamboo has high ecological, economic and cultural value. Studies have shown that the growth of moso bamboo is influenced by various stresses. Several traditional methods are time-consuming and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting orphan genes is of great significance.In this paper, we propose a novel deep learning model (CNN + Transformer) for identifying orphan genes in moso bamboo. It uses a convolutional neural network in combination with a transformer neural network to capture k-mer amino acids and features between k-mer amino acids in protein sequences. The experimental results show that the average balance accuracy value of CNN + Transformer on moso bamboo dataset can reach 0.875, and the average Matthews Correlation Coefficient (MCC) value can reach 0.471. For the same testing set, the Balance Accuracy (BA), Geometric Mean (GM), Bookmaker Informedness (BM), and MCC values of the recurrent neural network, long short-term memory, gated recurrent unit, and transformer models are all lower than those of CNN + Transformer, which indicated that the model has the extensive ability for OG identification in moso bamboo.CNN + Transformer model is feasible and obtains the credible predictive results. It may also provide valuable references for other related research. As our knowledge, this is the first model to adopt the deep learning techniques for identifying orphan genes in plants." @default.
- W4229031330 created "2022-05-08" @default.
- W4229031330 creator A5023848989 @default.
- W4229031330 creator A5043142532 @default.
- W4229031330 creator A5050632045 @default.
- W4229031330 creator A5058709700 @default.
- W4229031330 creator A5064144631 @default.
- W4229031330 creator A5089588347 @default.
- W4229031330 creator A5054680322 @default.
- W4229031330 date "2022-05-05" @default.
- W4229031330 modified "2023-10-08" @default.
- W4229031330 title "A deep learning approach for orphan gene identification in moso bamboo (Phyllostachys edulis) based on the CNN + Transformer model" @default.
- W4229031330 cites W1478648646 @default.
- W4229031330 cites W1963749132 @default.
- W4229031330 cites W1972824771 @default.
- W4229031330 cites W1988485432 @default.
- W4229031330 cites W2046085083 @default.
- W4229031330 cites W2050077513 @default.
- W4229031330 cites W2055043387 @default.
- W4229031330 cites W2056699111 @default.
- W4229031330 cites W2059223767 @default.
- W4229031330 cites W2092776658 @default.
- W4229031330 cites W2107519392 @default.
- W4229031330 cites W2108492781 @default.
- W4229031330 cites W2109636763 @default.
- W4229031330 cites W2127673162 @default.
- W4229031330 cites W2128689695 @default.
- W4229031330 cites W2132009717 @default.
- W4229031330 cites W2132706594 @default.
- W4229031330 cites W2141292707 @default.
- W4229031330 cites W2159482845 @default.
- W4229031330 cites W2161153002 @default.
- W4229031330 cites W2165118109 @default.
- W4229031330 cites W2173312143 @default.
- W4229031330 cites W2433743436 @default.
- W4229031330 cites W2736280136 @default.
- W4229031330 cites W2766191963 @default.
- W4229031330 cites W2885583144 @default.
- W4229031330 cites W2889887734 @default.
- W4229031330 cites W2891563800 @default.
- W4229031330 cites W2900903885 @default.
- W4229031330 cites W2916877561 @default.
- W4229031330 cites W2918408501 @default.
- W4229031330 cites W2919115771 @default.
- W4229031330 cites W2958612150 @default.
- W4229031330 cites W2963347351 @default.
- W4229031330 cites W2968199443 @default.
- W4229031330 cites W2969718750 @default.
- W4229031330 cites W2980141724 @default.
- W4229031330 cites W2998559844 @default.
- W4229031330 cites W2999309192 @default.
- W4229031330 cites W3000237001 @default.
- W4229031330 cites W3025339916 @default.
- W4229031330 cites W3036973367 @default.
- W4229031330 cites W3085184829 @default.
- W4229031330 cites W3096828292 @default.
- W4229031330 cites W3162780970 @default.
- W4229031330 cites W3170841864 @default.
- W4229031330 cites W3171169846 @default.
- W4229031330 cites W3213342912 @default.
- W4229031330 cites W4294216483 @default.
- W4229031330 doi "https://doi.org/10.1186/s12859-022-04702-1" @default.
- W4229031330 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35513802" @default.
- W4229031330 hasPublicationYear "2022" @default.
- W4229031330 type Work @default.
- W4229031330 citedByCount "7" @default.
- W4229031330 countsByYear W42290313302022 @default.
- W4229031330 countsByYear W42290313302023 @default.
- W4229031330 crossrefType "journal-article" @default.
- W4229031330 hasAuthorship W4229031330A5023848989 @default.
- W4229031330 hasAuthorship W4229031330A5043142532 @default.
- W4229031330 hasAuthorship W4229031330A5050632045 @default.
- W4229031330 hasAuthorship W4229031330A5054680322 @default.
- W4229031330 hasAuthorship W4229031330A5058709700 @default.
- W4229031330 hasAuthorship W4229031330A5064144631 @default.
- W4229031330 hasAuthorship W4229031330A5089588347 @default.
- W4229031330 hasBestOaLocation W42290313301 @default.
- W4229031330 hasConcept C108583219 @default.
- W4229031330 hasConcept C119599485 @default.
- W4229031330 hasConcept C119857082 @default.
- W4229031330 hasConcept C127413603 @default.
- W4229031330 hasConcept C154945302 @default.
- W4229031330 hasConcept C165801399 @default.
- W4229031330 hasConcept C2778704284 @default.
- W4229031330 hasConcept C2779213740 @default.
- W4229031330 hasConcept C41008148 @default.
- W4229031330 hasConcept C50644808 @default.
- W4229031330 hasConcept C59822182 @default.
- W4229031330 hasConcept C66322947 @default.
- W4229031330 hasConcept C81363708 @default.
- W4229031330 hasConcept C86803240 @default.
- W4229031330 hasConceptScore W4229031330C108583219 @default.
- W4229031330 hasConceptScore W4229031330C119599485 @default.
- W4229031330 hasConceptScore W4229031330C119857082 @default.
- W4229031330 hasConceptScore W4229031330C127413603 @default.
- W4229031330 hasConceptScore W4229031330C154945302 @default.
- W4229031330 hasConceptScore W4229031330C165801399 @default.
- W4229031330 hasConceptScore W4229031330C2778704284 @default.
- W4229031330 hasConceptScore W4229031330C2779213740 @default.
- W4229031330 hasConceptScore W4229031330C41008148 @default.