Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229034462> ?p ?o ?g. }
- W4229034462 endingPage "1102" @default.
- W4229034462 startingPage "1091" @default.
- W4229034462 abstract "Purpose Performing measurement-based patient-specific quality assurance (PSQA) is recognized as a resource-intensive and time inefficient task in the radiation therapy treatment workflow. Paired with technological refinements in modern radiation therapy, research toward measurement-free PSQA has seen increased interest during the past 5 years. However, these efforts have not been clinically implemented or prospectively validated in the United States. We propose a virtual QA (VQA) system and workflow to assess the safety and workload reduction of measurement-free PSQA. Methods An XGBoost machine learning model was designed to predict PSQA outcomes of volumetric modulated arc therapy plans, represented as percent differences between the measured ion chamber point dose in a phantom and the corresponding planned dose. The final model was deployed within a web application to predict PSQA outcomes of clinical plans within an existing clinical workflow. The application also displays relevant feature importance and plan-specific distribution analyses relative to database plans for documentation and to aid physicist interpretation and evaluation. VQA predictions were prospectively validated over 3 months of measurements at our clinic to assess safety and efficiency gains. Results Over 3 months, VQA predictions for 445 volumetric modulated arc therapy plans were prospectively validated at our institution. VQA predictions for these plans had a mean absolute error of 1.08% ± 0.77%, with a maximum absolute error of 2.98%. Using a 1% prediction threshold (ie, plans predicted to have an absolute error <1% would not require a measurement) would yield a 69.2% reduction in QA workload, saving 32.5 hours per month on average, with 81.5% sensitivity, 72.4% specificity, and an area under the curve of 0.81 at a 3% clinical threshold and 100% sensitivity, 70% specificity, and an area under the curve of 0.93 at a 4% clinical threshold. Conclusions This is the first prospective clinical implementation and validation of VQA in the United States, which we observed to be efficient. Using a conservative threshold, VQA can substantially reduce the number of required measurements for PSQA, leading to more effective allocation of clinical resources. Performing measurement-based patient-specific quality assurance (PSQA) is recognized as a resource-intensive and time inefficient task in the radiation therapy treatment workflow. Paired with technological refinements in modern radiation therapy, research toward measurement-free PSQA has seen increased interest during the past 5 years. However, these efforts have not been clinically implemented or prospectively validated in the United States. We propose a virtual QA (VQA) system and workflow to assess the safety and workload reduction of measurement-free PSQA. An XGBoost machine learning model was designed to predict PSQA outcomes of volumetric modulated arc therapy plans, represented as percent differences between the measured ion chamber point dose in a phantom and the corresponding planned dose. The final model was deployed within a web application to predict PSQA outcomes of clinical plans within an existing clinical workflow. The application also displays relevant feature importance and plan-specific distribution analyses relative to database plans for documentation and to aid physicist interpretation and evaluation. VQA predictions were prospectively validated over 3 months of measurements at our clinic to assess safety and efficiency gains. Over 3 months, VQA predictions for 445 volumetric modulated arc therapy plans were prospectively validated at our institution. VQA predictions for these plans had a mean absolute error of 1.08% ± 0.77%, with a maximum absolute error of 2.98%. Using a 1% prediction threshold (ie, plans predicted to have an absolute error <1% would not require a measurement) would yield a 69.2% reduction in QA workload, saving 32.5 hours per month on average, with 81.5% sensitivity, 72.4% specificity, and an area under the curve of 0.81 at a 3% clinical threshold and 100% sensitivity, 70% specificity, and an area under the curve of 0.93 at a 4% clinical threshold. This is the first prospective clinical implementation and validation of VQA in the United States, which we observed to be efficient. Using a conservative threshold, VQA can substantially reduce the number of required measurements for PSQA, leading to more effective allocation of clinical resources." @default.
- W4229034462 created "2022-05-08" @default.
- W4229034462 creator A5014990790 @default.
- W4229034462 creator A5032613122 @default.
- W4229034462 creator A5067097934 @default.
- W4229034462 creator A5074844270 @default.
- W4229034462 creator A5080187590 @default.
- W4229034462 date "2022-08-01" @default.
- W4229034462 modified "2023-10-13" @default.
- W4229034462 title "Prospective Clinical Validation of Virtual Patient-Specific Quality Assurance of Volumetric Modulated Arc Therapy Radiation Therapy Plans" @default.
- W4229034462 cites W1486975441 @default.
- W4229034462 cites W1967798147 @default.
- W4229034462 cites W1973715126 @default.
- W4229034462 cites W1974392680 @default.
- W4229034462 cites W1980872660 @default.
- W4229034462 cites W1982787151 @default.
- W4229034462 cites W1995415297 @default.
- W4229034462 cites W1998468198 @default.
- W4229034462 cites W1998759803 @default.
- W4229034462 cites W1999640747 @default.
- W4229034462 cites W2014500432 @default.
- W4229034462 cites W2017016280 @default.
- W4229034462 cites W2022785682 @default.
- W4229034462 cites W2028604160 @default.
- W4229034462 cites W2041050841 @default.
- W4229034462 cites W2050139244 @default.
- W4229034462 cites W2050311003 @default.
- W4229034462 cites W2065002976 @default.
- W4229034462 cites W2067603385 @default.
- W4229034462 cites W2084851290 @default.
- W4229034462 cites W2091388764 @default.
- W4229034462 cites W2093465321 @default.
- W4229034462 cites W2105874637 @default.
- W4229034462 cites W2120950852 @default.
- W4229034462 cites W2126956530 @default.
- W4229034462 cites W2137642415 @default.
- W4229034462 cites W2147998821 @default.
- W4229034462 cites W2163399589 @default.
- W4229034462 cites W2164718209 @default.
- W4229034462 cites W2165767756 @default.
- W4229034462 cites W2167779978 @default.
- W4229034462 cites W2472443435 @default.
- W4229034462 cites W2613975565 @default.
- W4229034462 cites W2619544250 @default.
- W4229034462 cites W2622652388 @default.
- W4229034462 cites W2749375587 @default.
- W4229034462 cites W2791042095 @default.
- W4229034462 cites W2794962342 @default.
- W4229034462 cites W2887229430 @default.
- W4229034462 cites W2929904232 @default.
- W4229034462 cites W2946941071 @default.
- W4229034462 cites W2946989165 @default.
- W4229034462 cites W2947741901 @default.
- W4229034462 cites W2949077056 @default.
- W4229034462 cites W2966460997 @default.
- W4229034462 cites W2999010647 @default.
- W4229034462 cites W3045359972 @default.
- W4229034462 cites W3045788395 @default.
- W4229034462 cites W3090401247 @default.
- W4229034462 cites W3105356947 @default.
- W4229034462 cites W3108462464 @default.
- W4229034462 cites W3116258642 @default.
- W4229034462 cites W3130819365 @default.
- W4229034462 cites W3151428855 @default.
- W4229034462 cites W3174103279 @default.
- W4229034462 doi "https://doi.org/10.1016/j.ijrobp.2022.04.040" @default.
- W4229034462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35533908" @default.
- W4229034462 hasPublicationYear "2022" @default.
- W4229034462 type Work @default.
- W4229034462 citedByCount "6" @default.
- W4229034462 countsByYear W42290344622022 @default.
- W4229034462 countsByYear W42290344622023 @default.
- W4229034462 crossrefType "journal-article" @default.
- W4229034462 hasAuthorship W4229034462A5014990790 @default.
- W4229034462 hasAuthorship W4229034462A5032613122 @default.
- W4229034462 hasAuthorship W4229034462A5067097934 @default.
- W4229034462 hasAuthorship W4229034462A5074844270 @default.
- W4229034462 hasAuthorship W4229034462A5080187590 @default.
- W4229034462 hasConcept C104293457 @default.
- W4229034462 hasConcept C106436119 @default.
- W4229034462 hasConcept C111919701 @default.
- W4229034462 hasConcept C142724271 @default.
- W4229034462 hasConcept C177212765 @default.
- W4229034462 hasConcept C19527891 @default.
- W4229034462 hasConcept C199360897 @default.
- W4229034462 hasConcept C2778476105 @default.
- W4229034462 hasConcept C2778618615 @default.
- W4229034462 hasConcept C2989005 @default.
- W4229034462 hasConcept C41008148 @default.
- W4229034462 hasConcept C56666940 @default.
- W4229034462 hasConcept C71924100 @default.
- W4229034462 hasConcept C77088390 @default.
- W4229034462 hasConceptScore W4229034462C104293457 @default.
- W4229034462 hasConceptScore W4229034462C106436119 @default.
- W4229034462 hasConceptScore W4229034462C111919701 @default.
- W4229034462 hasConceptScore W4229034462C142724271 @default.
- W4229034462 hasConceptScore W4229034462C177212765 @default.
- W4229034462 hasConceptScore W4229034462C19527891 @default.