Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229036698> ?p ?o ?g. }
- W4229036698 endingPage "A88" @default.
- W4229036698 startingPage "A88" @default.
- W4229036698 abstract "Context. A proper estimate of the chromospheric magnetic fields is thought to improve modelling of both active region and coronal mass ejection evolution. However, because the chromospheric field is not regularly obtained for sufficiently large fields of view, estimates thereof are commonly obtained through data-driven models or field extrapolations, based on photospheric boundary conditions alone and involving pre-processing that may reduce details and dynamic range in the magnetograms. Aims. We investigate the similarity between the chromospheric magnetic field that is directly inferred from observations and the field obtained from a magnetohydrostatic (MHS) extrapolation based on a high-resolution photospheric magnetogram. Methods. Based on Swedish 1-m Solar Telescope Fe I 6173 Å and Ca II 8542 Å observations of NOAA active region 12723, we employed the spatially regularised weak-field approximation (WFA) to derive the vector magnetic field in the chromosphere from Ca II , as well as non-local thermodynamic equilibrium (non-LTE) inversions of Fe I and Ca II to infer a model atmosphere for selected regions. Milne-Eddington inversions of Fe I serve as photospheric boundary conditions for the MHS model that delivers the three-dimensional field, gas pressure, and density self-consistently. Results. For the line-of-sight component, the MHS chromospheric field generally agrees with the non-LTE inversions and WFA, but tends to be weaker by 16% on average than these when larger in magnitude than 300 G. The observationally inferred transverse component is systematically stronger, up to an order of magnitude in magnetically weaker regions, but the qualitative distribution with height is similar to the MHS results. For either field component, the MHS chromospheric field lacks the fine structure derived from the inversions. Furthermore, the MHS model does not recover the magnetic imprint from a set of high fibrils connecting the main polarities. Conclusions. The MHS extrapolation and WFA provide a qualitatively similar chromospheric field, where the azimuth of the former is better aligned with Ca II 8542 Å fibrils than that of the WFA, especially outside strong-field concentrations. The amount of structure as well as the transverse field strengths are, however, underestimated by the MHS extrapolation. This underscores the importance of considering a chromospheric magnetic field constraint in data-driven modelling of active regions, particularly in the context of space weather predictions." @default.
- W4229036698 created "2022-05-08" @default.
- W4229036698 creator A5000514318 @default.
- W4229036698 creator A5018801480 @default.
- W4229036698 creator A5025462181 @default.
- W4229036698 creator A5026245103 @default.
- W4229036698 creator A5057680189 @default.
- W4229036698 creator A5077952551 @default.
- W4229036698 creator A5084131983 @default.
- W4229036698 creator A5090871995 @default.
- W4229036698 date "2022-06-01" @default.
- W4229036698 modified "2023-10-14" @default.
- W4229036698 title "Active region chromospheric magnetic fields" @default.
- W4229036698 cites W1973345267 @default.
- W4229036698 cites W1975339449 @default.
- W4229036698 cites W1994968750 @default.
- W4229036698 cites W1999951101 @default.
- W4229036698 cites W2003143495 @default.
- W4229036698 cites W2011301426 @default.
- W4229036698 cites W2032783371 @default.
- W4229036698 cites W2062579310 @default.
- W4229036698 cites W2072748559 @default.
- W4229036698 cites W2072929426 @default.
- W4229036698 cites W2075873833 @default.
- W4229036698 cites W2080702877 @default.
- W4229036698 cites W2094483427 @default.
- W4229036698 cites W2111078819 @default.
- W4229036698 cites W2120185484 @default.
- W4229036698 cites W2122755404 @default.
- W4229036698 cites W2124895802 @default.
- W4229036698 cites W2135625048 @default.
- W4229036698 cites W2142234851 @default.
- W4229036698 cites W2148175254 @default.
- W4229036698 cites W2153097002 @default.
- W4229036698 cites W2158612941 @default.
- W4229036698 cites W2301393603 @default.
- W4229036698 cites W2338818274 @default.
- W4229036698 cites W2474034009 @default.
- W4229036698 cites W2486621062 @default.
- W4229036698 cites W2528572162 @default.
- W4229036698 cites W2566092359 @default.
- W4229036698 cites W2899557151 @default.
- W4229036698 cites W2911677703 @default.
- W4229036698 cites W2951615470 @default.
- W4229036698 cites W2979879886 @default.
- W4229036698 cites W2980691000 @default.
- W4229036698 cites W3005640358 @default.
- W4229036698 cites W3092866052 @default.
- W4229036698 cites W3098156965 @default.
- W4229036698 cites W3098645349 @default.
- W4229036698 cites W3098703131 @default.
- W4229036698 cites W3099061543 @default.
- W4229036698 cites W3100393902 @default.
- W4229036698 cites W3100675305 @default.
- W4229036698 cites W3102739005 @default.
- W4229036698 cites W3102832476 @default.
- W4229036698 cites W3103145119 @default.
- W4229036698 cites W3103565718 @default.
- W4229036698 cites W3103606126 @default.
- W4229036698 cites W3104747953 @default.
- W4229036698 cites W3104836556 @default.
- W4229036698 cites W3105187215 @default.
- W4229036698 cites W3105353888 @default.
- W4229036698 cites W3105815960 @default.
- W4229036698 cites W3106104912 @default.
- W4229036698 cites W3106518077 @default.
- W4229036698 cites W3107767731 @default.
- W4229036698 cites W3110142491 @default.
- W4229036698 cites W3162265309 @default.
- W4229036698 cites W4288079677 @default.
- W4229036698 cites W4300090858 @default.
- W4229036698 doi "https://doi.org/10.1051/0004-6361/202142087" @default.
- W4229036698 hasPublicationYear "2022" @default.
- W4229036698 type Work @default.
- W4229036698 citedByCount "6" @default.
- W4229036698 countsByYear W42290366982022 @default.
- W4229036698 countsByYear W42290366982023 @default.
- W4229036698 crossrefType "journal-article" @default.
- W4229036698 hasAuthorship W4229036698A5000514318 @default.
- W4229036698 hasAuthorship W4229036698A5018801480 @default.
- W4229036698 hasAuthorship W4229036698A5025462181 @default.
- W4229036698 hasAuthorship W4229036698A5026245103 @default.
- W4229036698 hasAuthorship W4229036698A5057680189 @default.
- W4229036698 hasAuthorship W4229036698A5077952551 @default.
- W4229036698 hasAuthorship W4229036698A5084131983 @default.
- W4229036698 hasAuthorship W4229036698A5090871995 @default.
- W4229036698 hasBestOaLocation W42290366981 @default.
- W4229036698 hasConcept C106933524 @default.
- W4229036698 hasConcept C115260700 @default.
- W4229036698 hasConcept C121332964 @default.
- W4229036698 hasConcept C132459708 @default.
- W4229036698 hasConcept C134306372 @default.
- W4229036698 hasConcept C151730666 @default.
- W4229036698 hasConcept C157479481 @default.
- W4229036698 hasConcept C202444582 @default.
- W4229036698 hasConcept C205995761 @default.
- W4229036698 hasConcept C2779343474 @default.
- W4229036698 hasConcept C2779471453 @default.