Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229038050> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4229038050 endingPage "9" @default.
- W4229038050 startingPage "1" @default.
- W4229038050 abstract "The purpose of this research is to enhance the ability of data analysis and knowledge mining in soil corrosion factors of the pipeline. According to its multifactor characteristics, the rough set algorithm is directly used to analyze and process the observation data without considering any prior information. We apply rough set algorithm to delete the duplicate same information and redundant items and simplify the condition attributes and decision indicators from the decision table. Combined with the simplified index, the decision tree method is used to analyze the root node and branch node of it, and the knowledge decision model is constructed. With the Python machine learning language and PyCharm Community Edition software, the algorithm functions of rough set and decision tree are realized, so as to carry out artificial intelligence analysis and judgment of the soil corrosion factor data in pipeline. Taking the area of loam soil corrosion as an example, the data analysis and knowledge mining of its multifactors original data are carried out through the model. The example verifies that the evaluation and classification rules of the model meet the requirements, and there are no problems such as inconsistency and heterogeneity. It provides decision-making service and theoretical basis for the soil corrosion management of pipeline." @default.
- W4229038050 created "2022-05-08" @default.
- W4229038050 creator A5007852675 @default.
- W4229038050 creator A5030861786 @default.
- W4229038050 creator A5036938416 @default.
- W4229038050 creator A5051808133 @default.
- W4229038050 date "2022-05-06" @default.
- W4229038050 modified "2023-10-09" @default.
- W4229038050 title "Data Analysis and Knowledge Mining of Machine Learning in Soil Corrosion Factors of the Pipeline Safety" @default.
- W4229038050 cites W2766470662 @default.
- W4229038050 cites W2768168730 @default.
- W4229038050 cites W2990531785 @default.
- W4229038050 cites W3038373120 @default.
- W4229038050 cites W3079064409 @default.
- W4229038050 cites W3092986734 @default.
- W4229038050 cites W3108349105 @default.
- W4229038050 cites W3137341414 @default.
- W4229038050 cites W3195573072 @default.
- W4229038050 cites W4250437098 @default.
- W4229038050 cites W4255834020 @default.
- W4229038050 doi "https://doi.org/10.1155/2022/9523878" @default.
- W4229038050 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35571701" @default.
- W4229038050 hasPublicationYear "2022" @default.
- W4229038050 type Work @default.
- W4229038050 citedByCount "0" @default.
- W4229038050 crossrefType "journal-article" @default.
- W4229038050 hasAuthorship W4229038050A5007852675 @default.
- W4229038050 hasAuthorship W4229038050A5030861786 @default.
- W4229038050 hasAuthorship W4229038050A5036938416 @default.
- W4229038050 hasAuthorship W4229038050A5051808133 @default.
- W4229038050 hasBestOaLocation W42290380501 @default.
- W4229038050 hasConcept C10229987 @default.
- W4229038050 hasConcept C111012933 @default.
- W4229038050 hasConcept C119857082 @default.
- W4229038050 hasConcept C124101348 @default.
- W4229038050 hasConcept C154945302 @default.
- W4229038050 hasConcept C172967692 @default.
- W4229038050 hasConcept C199360897 @default.
- W4229038050 hasConcept C41008148 @default.
- W4229038050 hasConcept C43521106 @default.
- W4229038050 hasConcept C5481197 @default.
- W4229038050 hasConcept C84525736 @default.
- W4229038050 hasConceptScore W4229038050C10229987 @default.
- W4229038050 hasConceptScore W4229038050C111012933 @default.
- W4229038050 hasConceptScore W4229038050C119857082 @default.
- W4229038050 hasConceptScore W4229038050C124101348 @default.
- W4229038050 hasConceptScore W4229038050C154945302 @default.
- W4229038050 hasConceptScore W4229038050C172967692 @default.
- W4229038050 hasConceptScore W4229038050C199360897 @default.
- W4229038050 hasConceptScore W4229038050C41008148 @default.
- W4229038050 hasConceptScore W4229038050C43521106 @default.
- W4229038050 hasConceptScore W4229038050C5481197 @default.
- W4229038050 hasConceptScore W4229038050C84525736 @default.
- W4229038050 hasFunder F4320325627 @default.
- W4229038050 hasLocation W42290380501 @default.
- W4229038050 hasLocation W42290380502 @default.
- W4229038050 hasLocation W42290380503 @default.
- W4229038050 hasOpenAccess W4229038050 @default.
- W4229038050 hasPrimaryLocation W42290380501 @default.
- W4229038050 hasRelatedWork W129125017 @default.
- W4229038050 hasRelatedWork W1481146139 @default.
- W4229038050 hasRelatedWork W1983160380 @default.
- W4229038050 hasRelatedWork W2356831663 @default.
- W4229038050 hasRelatedWork W2357821325 @default.
- W4229038050 hasRelatedWork W2362185709 @default.
- W4229038050 hasRelatedWork W2369008188 @default.
- W4229038050 hasRelatedWork W2372931108 @default.
- W4229038050 hasRelatedWork W2377832020 @default.
- W4229038050 hasRelatedWork W2586297589 @default.
- W4229038050 hasVolume "2022" @default.
- W4229038050 isParatext "false" @default.
- W4229038050 isRetracted "false" @default.
- W4229038050 workType "article" @default.