Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229039606> ?p ?o ?g. }
- W4229039606 abstract "Missing observations in trait datasets pose an obstacle for analyses in myriad biological disciplines. Considering the mixed results of imputation, the wide variety of available methods, and the varied structure of real trait datasets, a framework for selecting a suitable imputation method is advantageous. We invoked a real data-driven simulation strategy to select an imputation method for a given mixed-type (categorical, count, continuous) target dataset. Candidate methods included mean/mode imputation, k-nearest neighbour, random forests, and multivariate imputation by chained equations (MICE). Using a trait dataset of squamates (lizards and amphisbaenians; order: Squamata) as a target dataset, a complete-case dataset consisting of species with nearly completed information was formed for the imputation method selection. Missing data were induced by removing values from this dataset under different missingness mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). For each method, combinations with and without phylogenetic information from single gene (nuclear and mitochondrial) or multigene trees were used to impute the missing values for five numerical and two categorical traits. The performances of the methods were evaluated under each missing mechanism by determining the mean squared error and proportion falsely classified rates for numerical and categorical traits, respectively. A random forest method supplemented with a nuclear-derived phylogeny resulted in the lowest error rates for the majority of traits, and this method was used to impute missing values in the original dataset. Data with imputed values better reflected the characteristics and distributions of the original data compared to complete-case data. However, caution should be taken when imputing trait data as phylogeny did not always improve performance for every trait and in every scenario. Ultimately, these results support the use of a real data-driven simulation strategy for selecting a suitable imputation method for a given mixed-type trait dataset." @default.
- W4229039606 created "2022-05-08" @default.
- W4229039606 creator A5028175396 @default.
- W4229039606 creator A5039279408 @default.
- W4229039606 creator A5086657960 @default.
- W4229039606 date "2022-05-04" @default.
- W4229039606 modified "2023-09-27" @default.
- W4229039606 title "A real data-driven simulation strategy to select an imputation method for mixed-type trait data" @default.
- W4229039606 cites W1565941997 @default.
- W4229039606 cites W1605984840 @default.
- W4229039606 cites W1905326921 @default.
- W4229039606 cites W1911339904 @default.
- W4229039606 cites W1977808777 @default.
- W4229039606 cites W1977853062 @default.
- W4229039606 cites W1984407408 @default.
- W4229039606 cites W1990221500 @default.
- W4229039606 cites W1991953651 @default.
- W4229039606 cites W1996773798 @default.
- W4229039606 cites W2012738975 @default.
- W4229039606 cites W2035021983 @default.
- W4229039606 cites W2045897988 @default.
- W4229039606 cites W2047145024 @default.
- W4229039606 cites W2058854776 @default.
- W4229039606 cites W2064186732 @default.
- W4229039606 cites W2073187137 @default.
- W4229039606 cites W2092627996 @default.
- W4229039606 cites W2100358124 @default.
- W4229039606 cites W2114525641 @default.
- W4229039606 cites W2115556561 @default.
- W4229039606 cites W2127841934 @default.
- W4229039606 cites W2130609411 @default.
- W4229039606 cites W2141052558 @default.
- W4229039606 cites W2162772535 @default.
- W4229039606 cites W2166659730 @default.
- W4229039606 cites W2232605265 @default.
- W4229039606 cites W2243407757 @default.
- W4229039606 cites W2277775295 @default.
- W4229039606 cites W2579657972 @default.
- W4229039606 cites W2587852741 @default.
- W4229039606 cites W2761120655 @default.
- W4229039606 cites W2767517408 @default.
- W4229039606 cites W2770756645 @default.
- W4229039606 cites W2771748088 @default.
- W4229039606 cites W2793414659 @default.
- W4229039606 cites W2800968938 @default.
- W4229039606 cites W2803339352 @default.
- W4229039606 cites W2883251903 @default.
- W4229039606 cites W2889026023 @default.
- W4229039606 cites W2891516044 @default.
- W4229039606 cites W2904977537 @default.
- W4229039606 cites W2905028494 @default.
- W4229039606 cites W2920529430 @default.
- W4229039606 cites W2928281601 @default.
- W4229039606 cites W2980264611 @default.
- W4229039606 cites W2991157178 @default.
- W4229039606 cites W3004235062 @default.
- W4229039606 cites W3092119462 @default.
- W4229039606 cites W3093435236 @default.
- W4229039606 cites W3094098167 @default.
- W4229039606 cites W3121953277 @default.
- W4229039606 cites W3135184466 @default.
- W4229039606 cites W3139213875 @default.
- W4229039606 cites W4225090134 @default.
- W4229039606 cites W4229039606 @default.
- W4229039606 cites W4242289937 @default.
- W4229039606 cites W4242879632 @default.
- W4229039606 cites W4376595873 @default.
- W4229039606 cites W612972800 @default.
- W4229039606 doi "https://doi.org/10.1101/2022.05.03.490388" @default.
- W4229039606 hasPublicationYear "2022" @default.
- W4229039606 type Work @default.
- W4229039606 citedByCount "1" @default.
- W4229039606 countsByYear W42290396062022 @default.
- W4229039606 crossrefType "posted-content" @default.
- W4229039606 hasAuthorship W4229039606A5028175396 @default.
- W4229039606 hasAuthorship W4229039606A5039279408 @default.
- W4229039606 hasAuthorship W4229039606A5086657960 @default.
- W4229039606 hasBestOaLocation W42290396061 @default.
- W4229039606 hasConcept C105795698 @default.
- W4229039606 hasConcept C106934330 @default.
- W4229039606 hasConcept C124101348 @default.
- W4229039606 hasConcept C139945424 @default.
- W4229039606 hasConcept C154945302 @default.
- W4229039606 hasConcept C161584116 @default.
- W4229039606 hasConcept C169258074 @default.
- W4229039606 hasConcept C199360897 @default.
- W4229039606 hasConcept C33923547 @default.
- W4229039606 hasConcept C40696583 @default.
- W4229039606 hasConcept C41008148 @default.
- W4229039606 hasConcept C5274069 @default.
- W4229039606 hasConcept C58041806 @default.
- W4229039606 hasConcept C9357733 @default.
- W4229039606 hasConceptScore W4229039606C105795698 @default.
- W4229039606 hasConceptScore W4229039606C106934330 @default.
- W4229039606 hasConceptScore W4229039606C124101348 @default.
- W4229039606 hasConceptScore W4229039606C139945424 @default.
- W4229039606 hasConceptScore W4229039606C154945302 @default.
- W4229039606 hasConceptScore W4229039606C161584116 @default.
- W4229039606 hasConceptScore W4229039606C169258074 @default.
- W4229039606 hasConceptScore W4229039606C199360897 @default.