Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229040274> ?p ?o ?g. }
- W4229040274 abstract "Machine learning models can provide fast and accurate predictions of material properties but often lack transparency. Interpretability techniques can be used with black box solutions, or alternatively, models can be created that are directly interpretable. We revisit material datasets used in several works and demonstrate that simple linear combinations of nonlinear basis functions can be created, which have comparable accuracy to the kernel and neural network approaches originally used. Linear solutions can accurately predict the bandgap and formation energy of transparent conducting oxides, the spin states for transition metal complexes, and the formation energy for elpasolite structures. We demonstrate how linear solutions can provide interpretable predictive models and highlight the new insights that can be found when a model can be directly understood from its coefficients and functional form. Furthermore, we discuss how to recognize when intrinsically interpretable solutions may be the best route to interpretability." @default.
- W4229040274 created "2022-05-08" @default.
- W4229040274 creator A5025334398 @default.
- W4229040274 creator A5026929463 @default.
- W4229040274 date "2022-05-06" @default.
- W4229040274 modified "2023-10-16" @default.
- W4229040274 title "Machine learning of material properties: Predictive and interpretable multilinear models" @default.
- W4229040274 cites W1678356000 @default.
- W4229040274 cites W1772299910 @default.
- W4229040274 cites W1865667476 @default.
- W4229040274 cites W2029413789 @default.
- W4229040274 cites W2035158988 @default.
- W4229040274 cites W2045738083 @default.
- W4229040274 cites W2048231652 @default.
- W4229040274 cites W2068561951 @default.
- W4229040274 cites W2082744631 @default.
- W4229040274 cites W2083415705 @default.
- W4229040274 cites W2088286197 @default.
- W4229040274 cites W2093400126 @default.
- W4229040274 cites W2125847307 @default.
- W4229040274 cites W2129888542 @default.
- W4229040274 cites W2148424525 @default.
- W4229040274 cites W2159357141 @default.
- W4229040274 cites W2164524421 @default.
- W4229040274 cites W2197007850 @default.
- W4229040274 cites W2261108203 @default.
- W4229040274 cites W2509907061 @default.
- W4229040274 cites W2510117937 @default.
- W4229040274 cites W2519095976 @default.
- W4229040274 cites W2526943155 @default.
- W4229040274 cites W2527749992 @default.
- W4229040274 cites W2564078846 @default.
- W4229040274 cites W2587210624 @default.
- W4229040274 cites W2766856748 @default.
- W4229040274 cites W2767987205 @default.
- W4229040274 cites W2792842859 @default.
- W4229040274 cites W2902452488 @default.
- W4229040274 cites W2907897763 @default.
- W4229040274 cites W2910831171 @default.
- W4229040274 cites W2910857709 @default.
- W4229040274 cites W2945976633 @default.
- W4229040274 cites W2968923792 @default.
- W4229040274 cites W2975965186 @default.
- W4229040274 cites W2985604485 @default.
- W4229040274 cites W2986734036 @default.
- W4229040274 cites W3012140320 @default.
- W4229040274 cites W3016401366 @default.
- W4229040274 cites W3035517615 @default.
- W4229040274 cites W3042344738 @default.
- W4229040274 cites W3098179186 @default.
- W4229040274 cites W3098539674 @default.
- W4229040274 cites W3099469678 @default.
- W4229040274 cites W3099937095 @default.
- W4229040274 cites W3101699553 @default.
- W4229040274 cites W3101883705 @default.
- W4229040274 cites W3106889297 @default.
- W4229040274 cites W3126368770 @default.
- W4229040274 cites W3132956480 @default.
- W4229040274 cites W3134756482 @default.
- W4229040274 cites W3138819813 @default.
- W4229040274 cites W3165722714 @default.
- W4229040274 cites W3181257149 @default.
- W4229040274 doi "https://doi.org/10.1126/sciadv.abm7185" @default.
- W4229040274 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35522750" @default.
- W4229040274 hasPublicationYear "2022" @default.
- W4229040274 type Work @default.
- W4229040274 citedByCount "17" @default.
- W4229040274 countsByYear W42290402742022 @default.
- W4229040274 countsByYear W42290402742023 @default.
- W4229040274 crossrefType "journal-article" @default.
- W4229040274 hasAuthorship W4229040274A5025334398 @default.
- W4229040274 hasAuthorship W4229040274A5026929463 @default.
- W4229040274 hasBestOaLocation W42290402741 @default.
- W4229040274 hasConcept C105795698 @default.
- W4229040274 hasConcept C111472728 @default.
- W4229040274 hasConcept C119857082 @default.
- W4229040274 hasConcept C121332964 @default.
- W4229040274 hasConcept C138885662 @default.
- W4229040274 hasConcept C154945302 @default.
- W4229040274 hasConcept C158622935 @default.
- W4229040274 hasConcept C163175372 @default.
- W4229040274 hasConcept C186370098 @default.
- W4229040274 hasConcept C202444582 @default.
- W4229040274 hasConcept C2780233690 @default.
- W4229040274 hasConcept C2780586882 @default.
- W4229040274 hasConcept C2781067378 @default.
- W4229040274 hasConcept C33923547 @default.
- W4229040274 hasConcept C38652104 @default.
- W4229040274 hasConcept C41008148 @default.
- W4229040274 hasConcept C50644808 @default.
- W4229040274 hasConcept C62520636 @default.
- W4229040274 hasConcept C84392682 @default.
- W4229040274 hasConcept C94966114 @default.
- W4229040274 hasConceptScore W4229040274C105795698 @default.
- W4229040274 hasConceptScore W4229040274C111472728 @default.
- W4229040274 hasConceptScore W4229040274C119857082 @default.
- W4229040274 hasConceptScore W4229040274C121332964 @default.
- W4229040274 hasConceptScore W4229040274C138885662 @default.
- W4229040274 hasConceptScore W4229040274C154945302 @default.
- W4229040274 hasConceptScore W4229040274C158622935 @default.