Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229058070> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4229058070 endingPage "179" @default.
- W4229058070 startingPage "149" @default.
- W4229058070 abstract "Deep learning network (DLN) is defined as the neural network characterized by complex connected layers to handle a large volume of data, automatic extraction of features, and representation learning for identification and regression problems. This concise chapter on deep learning (DL) methods for data science takes readers through a series of program-writing tasks that introduce them to the use of different DL techniques in various areas of artificial intelligence (AI). It covers zen and tao of the various types of DL methods such as convolutional neural network, recurrent neural network (RNN), denoising autoencoder (DAE), recursive neural network, deep reinforcement learning, deep belief networks (DBNs), and long short-term memory (LSTM), i.e., starting from architecture, learning rules, mathematical model to programing aspects explained in this chapter. The developed and emerging structures of DLN has been applied in applications according to the depth of computational graph, learning, and performance. The knowledge of merits and demerits of each method can train reader toward selection of best suited technique for a given problem statement. For example, the evolution of RNN-based DL architecture innovated many applications in time series, biological, speech-to-text conversion, which has sequence dependent data. RNN handles both real values (time series) and symbolic values of variable length inputs. This chapter covers varieties of application with example to give reader an overall learning. The formulation of this chapter highlights the improvement in applications (such as language, text, signal, and image processing) by modifications in network configuration. This AI technique summarizes the necessity, development, strength, and weakness of DLN models used in data science which will integrate all the basic cores of engineering in near future." @default.
- W4229058070 created "2022-05-08" @default.
- W4229058070 creator A5024534313 @default.
- W4229058070 creator A5038720725 @default.
- W4229058070 creator A5065553665 @default.
- W4229058070 creator A5066738471 @default.
- W4229058070 date "2022-05-06" @default.
- W4229058070 modified "2023-10-16" @default.
- W4229058070 title "Deep Learning Methods for Data Science" @default.
- W4229058070 cites W2055537239 @default.
- W4229058070 cites W2064675550 @default.
- W4229058070 cites W2136848157 @default.
- W4229058070 cites W2804824909 @default.
- W4229058070 cites W2893192409 @default.
- W4229058070 cites W2902704945 @default.
- W4229058070 cites W2909905004 @default.
- W4229058070 cites W2919115771 @default.
- W4229058070 cites W2958750483 @default.
- W4229058070 cites W3005864656 @default.
- W4229058070 doi "https://doi.org/10.1002/9781119792437.ch7" @default.
- W4229058070 hasPublicationYear "2022" @default.
- W4229058070 type Work @default.
- W4229058070 citedByCount "3" @default.
- W4229058070 countsByYear W42290580702022 @default.
- W4229058070 countsByYear W42290580702023 @default.
- W4229058070 crossrefType "other" @default.
- W4229058070 hasAuthorship W4229058070A5024534313 @default.
- W4229058070 hasAuthorship W4229058070A5038720725 @default.
- W4229058070 hasAuthorship W4229058070A5065553665 @default.
- W4229058070 hasAuthorship W4229058070A5066738471 @default.
- W4229058070 hasConcept C108583219 @default.
- W4229058070 hasConcept C119857082 @default.
- W4229058070 hasConcept C147168706 @default.
- W4229058070 hasConcept C154945302 @default.
- W4229058070 hasConcept C41008148 @default.
- W4229058070 hasConcept C50644808 @default.
- W4229058070 hasConcept C97541855 @default.
- W4229058070 hasConceptScore W4229058070C108583219 @default.
- W4229058070 hasConceptScore W4229058070C119857082 @default.
- W4229058070 hasConceptScore W4229058070C147168706 @default.
- W4229058070 hasConceptScore W4229058070C154945302 @default.
- W4229058070 hasConceptScore W4229058070C41008148 @default.
- W4229058070 hasConceptScore W4229058070C50644808 @default.
- W4229058070 hasConceptScore W4229058070C97541855 @default.
- W4229058070 hasLocation W42290580701 @default.
- W4229058070 hasOpenAccess W4229058070 @default.
- W4229058070 hasPrimaryLocation W42290580701 @default.
- W4229058070 hasRelatedWork W3014300295 @default.
- W4229058070 hasRelatedWork W3164822677 @default.
- W4229058070 hasRelatedWork W4223943233 @default.
- W4229058070 hasRelatedWork W4225161397 @default.
- W4229058070 hasRelatedWork W4250304930 @default.
- W4229058070 hasRelatedWork W4312200629 @default.
- W4229058070 hasRelatedWork W4360585206 @default.
- W4229058070 hasRelatedWork W4364306694 @default.
- W4229058070 hasRelatedWork W4380075502 @default.
- W4229058070 hasRelatedWork W4380086463 @default.
- W4229058070 isParatext "false" @default.
- W4229058070 isRetracted "false" @default.
- W4229058070 workType "other" @default.