Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229058897> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4229058897 abstract "Registration of a series of the two-dimensional electron microscope (EM) images of the brain tissue into volumetric form is an important technique that can be used for neuronal circuit reconstruction. However, complex appearance changes of neuronal morphology in adjacent sections bring difficulty in finding correct correspondences, making serial section neural image registration challenging. To solve this problem, we consider whether there are such stable markers in the neural images to alleviate registration difficulty. In this paper, we employ the spherical deformation model to simulate the local neuron structure and analyze the relationship between registration accuracy and neuronal structure shapes in two adjacent sections. The relevant analysis proves that regular circular structures in the section images are instrumental in seeking robust corresponding relationships. Then, we design a new serial section image registration framework driven by this neuronal morphological model, fully utilizing the characteristics of the anatomical structure of nerve tissue and obtaining more reasonable corresponding relationships. Specifically, we leverage a deep membrane segmentation network and neural morphological physical selection model to select the stable rounded regions in neural images. Then, we combine feature extraction and global optimization of correspondence position to obtain the deformation field of multiple images. Experiments on real and synthetic serial EM section neural image datasets have demonstrated that our proposed method could achieve more reasonable and reliable registration results, outperforming the state-of-the-art approaches in qualitative and quantitative analysis." @default.
- W4229058897 created "2022-05-08" @default.
- W4229058897 creator A5003990275 @default.
- W4229058897 creator A5008171524 @default.
- W4229058897 creator A5037705650 @default.
- W4229058897 creator A5091906220 @default.
- W4229058897 date "2022-05-05" @default.
- W4229058897 modified "2023-09-26" @default.
- W4229058897 title "Neuronal Morphological Model-Driven Image Registration for Serial Electron Microscopy Sections" @default.
- W4229058897 cites W1587124315 @default.
- W4229058897 cites W1898703532 @default.
- W4229058897 cites W1965637518 @default.
- W4229058897 cites W1993267702 @default.
- W4229058897 cites W2004626802 @default.
- W4229058897 cites W2015475217 @default.
- W4229058897 cites W2026140461 @default.
- W4229058897 cites W2061744336 @default.
- W4229058897 cites W2069702026 @default.
- W4229058897 cites W2090518410 @default.
- W4229058897 cites W2100274920 @default.
- W4229058897 cites W2100495367 @default.
- W4229058897 cites W2126401690 @default.
- W4229058897 cites W2128409098 @default.
- W4229058897 cites W2133665775 @default.
- W4229058897 cites W2147762902 @default.
- W4229058897 cites W2157151515 @default.
- W4229058897 cites W2398853931 @default.
- W4229058897 cites W2537485100 @default.
- W4229058897 cites W2738479063 @default.
- W4229058897 cites W2750563029 @default.
- W4229058897 doi "https://doi.org/10.3389/fnhum.2022.846599" @default.
- W4229058897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35601904" @default.
- W4229058897 hasPublicationYear "2022" @default.
- W4229058897 type Work @default.
- W4229058897 citedByCount "0" @default.
- W4229058897 crossrefType "journal-article" @default.
- W4229058897 hasAuthorship W4229058897A5003990275 @default.
- W4229058897 hasAuthorship W4229058897A5008171524 @default.
- W4229058897 hasAuthorship W4229058897A5037705650 @default.
- W4229058897 hasAuthorship W4229058897A5091906220 @default.
- W4229058897 hasBestOaLocation W42290588971 @default.
- W4229058897 hasConcept C115961682 @default.
- W4229058897 hasConcept C153083717 @default.
- W4229058897 hasConcept C153180895 @default.
- W4229058897 hasConcept C154945302 @default.
- W4229058897 hasConcept C166704113 @default.
- W4229058897 hasConcept C31972630 @default.
- W4229058897 hasConcept C41008148 @default.
- W4229058897 hasConcept C50644808 @default.
- W4229058897 hasConcept C89600930 @default.
- W4229058897 hasConceptScore W4229058897C115961682 @default.
- W4229058897 hasConceptScore W4229058897C153083717 @default.
- W4229058897 hasConceptScore W4229058897C153180895 @default.
- W4229058897 hasConceptScore W4229058897C154945302 @default.
- W4229058897 hasConceptScore W4229058897C166704113 @default.
- W4229058897 hasConceptScore W4229058897C31972630 @default.
- W4229058897 hasConceptScore W4229058897C41008148 @default.
- W4229058897 hasConceptScore W4229058897C50644808 @default.
- W4229058897 hasConceptScore W4229058897C89600930 @default.
- W4229058897 hasLocation W42290588971 @default.
- W4229058897 hasLocation W42290588972 @default.
- W4229058897 hasLocation W42290588973 @default.
- W4229058897 hasOpenAccess W4229058897 @default.
- W4229058897 hasPrimaryLocation W42290588971 @default.
- W4229058897 hasRelatedWork W1669643531 @default.
- W4229058897 hasRelatedWork W1982826852 @default.
- W4229058897 hasRelatedWork W2005437358 @default.
- W4229058897 hasRelatedWork W2008656436 @default.
- W4229058897 hasRelatedWork W2023558673 @default.
- W4229058897 hasRelatedWork W2110230079 @default.
- W4229058897 hasRelatedWork W2134924024 @default.
- W4229058897 hasRelatedWork W2517104666 @default.
- W4229058897 hasRelatedWork W2613186388 @default.
- W4229058897 hasRelatedWork W1967061043 @default.
- W4229058897 hasVolume "16" @default.
- W4229058897 isParatext "false" @default.
- W4229058897 isRetracted "false" @default.
- W4229058897 workType "article" @default.