Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229059586> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4229059586 endingPage "e37831" @default.
- W4229059586 startingPage "e37831" @default.
- W4229059586 abstract "As the COVID-19 pandemic progressed, disinformation, fake news, and conspiracy theories spread through many parts of society. However, the disinformation spreading through social media is, according to the literature, one of the causes of increased COVID-19 vaccine hesitancy. In this context, the analysis of social media posts is particularly important, but the large amount of data exchanged on social media platforms requires specific methods. This is why machine learning and natural language processing models are increasingly applied to social media data.The aim of this study is to examine the capability of the CamemBERT French-language model to faithfully predict the elaborated categories, with the knowledge that tweets about vaccination are often ambiguous, sarcastic, or irrelevant to the studied topic.A total of 901,908 unique French-language tweets related to vaccination published between July 12, 2021, and August 11, 2021, were extracted using Twitter's application programming interface (version 2; Twitter Inc). Approximately 2000 randomly selected tweets were labeled with 2 types of categorizations: (1) arguments for (pros) or against (cons) vaccination (health measures included) and (2) type of content (scientific, political, social, or vaccination status). The CamemBERT model was fine-tuned and tested for the classification of French-language tweets. The model's performance was assessed by computing the F1-score, and confusion matrices were obtained.The accuracy of the applied machine learning reached up to 70.6% for the first classification (pro and con tweets) and up to 90% for the second classification (scientific and political tweets). Furthermore, a tweet was 1.86 times more likely to be incorrectly classified by the model if it contained fewer than 170 characters (odds ratio 1.86; 95% CI 1.20-2.86).The accuracy of the model is affected by the classification chosen and the topic of the message examined. When the vaccine debate is jostled by contested political decisions, tweet content becomes so heterogeneous that the accuracy of the model drops for less differentiated classes. However, our tests showed that it is possible to improve the accuracy by selecting tweets using a new method based on tweet length." @default.
- W4229059586 created "2022-05-08" @default.
- W4229059586 creator A5014590574 @default.
- W4229059586 creator A5050512080 @default.
- W4229059586 creator A5068383540 @default.
- W4229059586 date "2022-05-17" @default.
- W4229059586 modified "2023-10-18" @default.
- W4229059586 title "An Analysis of French-Language Tweets About COVID-19 Vaccines: Supervised Learning Approach" @default.
- W4229059586 cites W2062321610 @default.
- W4229059586 cites W2117485795 @default.
- W4229059586 cites W2738309937 @default.
- W4229059586 cites W2770259901 @default.
- W4229059586 cites W2900065283 @default.
- W4229059586 cites W2965373594 @default.
- W4229059586 cites W2986154550 @default.
- W4229059586 cites W2999678654 @default.
- W4229059586 cites W3004975108 @default.
- W4229059586 cites W3016902371 @default.
- W4229059586 cites W3024620668 @default.
- W4229059586 cites W3034731299 @default.
- W4229059586 cites W3045045932 @default.
- W4229059586 cites W3085975571 @default.
- W4229059586 cites W3101574506 @default.
- W4229059586 cites W3134443160 @default.
- W4229059586 cites W3137606497 @default.
- W4229059586 cites W3160863795 @default.
- W4229059586 cites W3183221431 @default.
- W4229059586 cites W3186243414 @default.
- W4229059586 cites W3199944795 @default.
- W4229059586 cites W4200304559 @default.
- W4229059586 cites W4206681343 @default.
- W4229059586 cites W4213441134 @default.
- W4229059586 cites W4254570011 @default.
- W4229059586 doi "https://doi.org/10.2196/37831" @default.
- W4229059586 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35512274" @default.
- W4229059586 hasPublicationYear "2022" @default.
- W4229059586 type Work @default.
- W4229059586 citedByCount "2" @default.
- W4229059586 countsByYear W42290595862023 @default.
- W4229059586 crossrefType "journal-article" @default.
- W4229059586 hasAuthorship W4229059586A5014590574 @default.
- W4229059586 hasAuthorship W4229059586A5050512080 @default.
- W4229059586 hasAuthorship W4229059586A5068383540 @default.
- W4229059586 hasBestOaLocation W42290595861 @default.
- W4229059586 hasConcept C12267149 @default.
- W4229059586 hasConcept C136764020 @default.
- W4229059586 hasConcept C154945302 @default.
- W4229059586 hasConcept C166957645 @default.
- W4229059586 hasConcept C204321447 @default.
- W4229059586 hasConcept C2776552730 @default.
- W4229059586 hasConcept C2779343474 @default.
- W4229059586 hasConcept C41008148 @default.
- W4229059586 hasConcept C518677369 @default.
- W4229059586 hasConcept C66402592 @default.
- W4229059586 hasConcept C95457728 @default.
- W4229059586 hasConceptScore W4229059586C12267149 @default.
- W4229059586 hasConceptScore W4229059586C136764020 @default.
- W4229059586 hasConceptScore W4229059586C154945302 @default.
- W4229059586 hasConceptScore W4229059586C166957645 @default.
- W4229059586 hasConceptScore W4229059586C204321447 @default.
- W4229059586 hasConceptScore W4229059586C2776552730 @default.
- W4229059586 hasConceptScore W4229059586C2779343474 @default.
- W4229059586 hasConceptScore W4229059586C41008148 @default.
- W4229059586 hasConceptScore W4229059586C518677369 @default.
- W4229059586 hasConceptScore W4229059586C66402592 @default.
- W4229059586 hasConceptScore W4229059586C95457728 @default.
- W4229059586 hasIssue "5" @default.
- W4229059586 hasLocation W42290595861 @default.
- W4229059586 hasLocation W42290595862 @default.
- W4229059586 hasLocation W42290595863 @default.
- W4229059586 hasLocation W42290595864 @default.
- W4229059586 hasLocation W42290595865 @default.
- W4229059586 hasLocation W42290595866 @default.
- W4229059586 hasLocation W42290595867 @default.
- W4229059586 hasLocation W42290595868 @default.
- W4229059586 hasLocation W42290595869 @default.
- W4229059586 hasOpenAccess W4229059586 @default.
- W4229059586 hasPrimaryLocation W42290595861 @default.
- W4229059586 hasRelatedWork W2326619756 @default.
- W4229059586 hasRelatedWork W2355927362 @default.
- W4229059586 hasRelatedWork W2748952813 @default.
- W4229059586 hasRelatedWork W3123624369 @default.
- W4229059586 hasRelatedWork W3185985147 @default.
- W4229059586 hasRelatedWork W3193538331 @default.
- W4229059586 hasRelatedWork W4223613244 @default.
- W4229059586 hasRelatedWork W4321836346 @default.
- W4229059586 hasRelatedWork W4385980000 @default.
- W4229059586 hasRelatedWork W4386707140 @default.
- W4229059586 hasVolume "10" @default.
- W4229059586 isParatext "false" @default.
- W4229059586 isRetracted "false" @default.
- W4229059586 workType "article" @default.