Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229061142> ?p ?o ?g. }
- W4229061142 endingPage "112155" @default.
- W4229061142 startingPage "112155" @default.
- W4229061142 abstract "We apply the deep learning approach to learn some nonlinear wave solutions of the Lakshmanan-Porsezian-Daniel (LPD) model characterizing the evolution of ultrashort optical pulse in optical fibers. Based on the strong universal approximation theorem, we give the initial-boundary value data and residual collocation points, choose the parameters initialization Xavier method and parameters optimization Adam and L-BFGS algorithms to construct the optimal neural network model. Then, we derive the data-driven solutions of the rogue wave, anti-dark soliton, multi-peak soliton, non-rational W-shaped soliton, rational W-shaped soliton as well as periodic-wave solutions for the LPD model. Finally, we study the parameters discovery of such model via the anti-dark soliton solution with 1% perturbation (or without perturbation)." @default.
- W4229061142 created "2022-05-08" @default.
- W4229061142 creator A5006822602 @default.
- W4229061142 creator A5029360035 @default.
- W4229061142 creator A5040092039 @default.
- W4229061142 creator A5064975508 @default.
- W4229061142 creator A5068401586 @default.
- W4229061142 creator A5073216396 @default.
- W4229061142 date "2022-06-01" @default.
- W4229061142 modified "2023-10-17" @default.
- W4229061142 title "The nonlinear wave solutions and parameters discovery of the Lakshmanan-Porsezian-Daniel based on deep learning" @default.
- W4229061142 cites W1176935030 @default.
- W4229061142 cites W1964582830 @default.
- W4229061142 cites W1964980395 @default.
- W4229061142 cites W1977137061 @default.
- W4229061142 cites W1991593102 @default.
- W4229061142 cites W1994151475 @default.
- W4229061142 cites W1996176370 @default.
- W4229061142 cites W2016586770 @default.
- W4229061142 cites W2022028964 @default.
- W4229061142 cites W2026236086 @default.
- W4229061142 cites W2030669316 @default.
- W4229061142 cites W2036613359 @default.
- W4229061142 cites W2045074428 @default.
- W4229061142 cites W2045833558 @default.
- W4229061142 cites W2051434435 @default.
- W4229061142 cites W2053748524 @default.
- W4229061142 cites W2055660721 @default.
- W4229061142 cites W2061755897 @default.
- W4229061142 cites W2067477844 @default.
- W4229061142 cites W2076904037 @default.
- W4229061142 cites W2137983211 @default.
- W4229061142 cites W2162387162 @default.
- W4229061142 cites W2169431613 @default.
- W4229061142 cites W2269714044 @default.
- W4229061142 cites W2296054341 @default.
- W4229061142 cites W2297851694 @default.
- W4229061142 cites W2333776728 @default.
- W4229061142 cites W2549029912 @default.
- W4229061142 cites W2763319238 @default.
- W4229061142 cites W2899283552 @default.
- W4229061142 cites W2919115771 @default.
- W4229061142 cites W2994722911 @default.
- W4229061142 cites W2995189065 @default.
- W4229061142 cites W3004965094 @default.
- W4229061142 cites W3010849941 @default.
- W4229061142 cites W3018440725 @default.
- W4229061142 cites W3036207925 @default.
- W4229061142 cites W3083348537 @default.
- W4229061142 cites W3088712209 @default.
- W4229061142 cites W3092073555 @default.
- W4229061142 cites W3095941015 @default.
- W4229061142 cites W3101260193 @default.
- W4229061142 cites W3120286796 @default.
- W4229061142 cites W3129334531 @default.
- W4229061142 cites W3165445341 @default.
- W4229061142 cites W3168017910 @default.
- W4229061142 cites W3177788059 @default.
- W4229061142 cites W3197053878 @default.
- W4229061142 cites W3197421817 @default.
- W4229061142 cites W3203264955 @default.
- W4229061142 cites W3207455116 @default.
- W4229061142 cites W4200521491 @default.
- W4229061142 cites W4247680473 @default.
- W4229061142 cites W821636499 @default.
- W4229061142 doi "https://doi.org/10.1016/j.chaos.2022.112155" @default.
- W4229061142 hasPublicationYear "2022" @default.
- W4229061142 type Work @default.
- W4229061142 citedByCount "5" @default.
- W4229061142 countsByYear W42290611422022 @default.
- W4229061142 countsByYear W42290611422023 @default.
- W4229061142 crossrefType "journal-article" @default.
- W4229061142 hasAuthorship W4229061142A5006822602 @default.
- W4229061142 hasAuthorship W4229061142A5029360035 @default.
- W4229061142 hasAuthorship W4229061142A5040092039 @default.
- W4229061142 hasAuthorship W4229061142A5064975508 @default.
- W4229061142 hasAuthorship W4229061142A5068401586 @default.
- W4229061142 hasAuthorship W4229061142A5073216396 @default.
- W4229061142 hasConcept C108583219 @default.
- W4229061142 hasConcept C111919701 @default.
- W4229061142 hasConcept C114466953 @default.
- W4229061142 hasConcept C121332964 @default.
- W4229061142 hasConcept C138673069 @default.
- W4229061142 hasConcept C149635348 @default.
- W4229061142 hasConcept C154945302 @default.
- W4229061142 hasConcept C158622935 @default.
- W4229061142 hasConcept C177918212 @default.
- W4229061142 hasConcept C199360897 @default.
- W4229061142 hasConcept C2780513914 @default.
- W4229061142 hasConcept C28826006 @default.
- W4229061142 hasConcept C33923547 @default.
- W4229061142 hasConcept C41008148 @default.
- W4229061142 hasConcept C50644808 @default.
- W4229061142 hasConcept C62520636 @default.
- W4229061142 hasConcept C87651913 @default.
- W4229061142 hasConceptScore W4229061142C108583219 @default.
- W4229061142 hasConceptScore W4229061142C111919701 @default.
- W4229061142 hasConceptScore W4229061142C114466953 @default.