Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229062308> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4229062308 endingPage "117347" @default.
- W4229062308 startingPage "117347" @default.
- W4229062308 abstract "Liver tumor segmentation from CT images plays an important role in disease diagnosis and treatment planning. In this paper, we propose an automatic segmentation framework dedicated to accurate liver tumor extraction from CT images. To reduce the segmentation complexity, 3D U-Net is first employed to extract liver region. Then, the liver region is divided into homogeneous superpixels by applying a LI-SLIC based hierarchical iterative segmentation strategy, in which the superpixels are decomposed recursively according to their intensity standard deviation in order to adhere to tumor boundaries precisely. Meanwhile, each pixel in the liver region is roughly classified into tumor or non-tumor by SVM using its local intensity and texture features. Finally, a voting model is developed to identify tumor regions from superpixels based on the pixel-wise classification results. Extensive experiments on two public clinical datasets and comparisons with many state-of-the-art methods demonstrate the superiority of our method on liver tumor segmentation especially for the images with noises, ambiguous boundaries, and low contrast." @default.
- W4229062308 created "2022-05-08" @default.
- W4229062308 creator A5044278113 @default.
- W4229062308 creator A5047200850 @default.
- W4229062308 creator A5047986262 @default.
- W4229062308 creator A5053378837 @default.
- W4229062308 creator A5070897418 @default.
- W4229062308 date "2022-10-01" @default.
- W4229062308 modified "2023-10-01" @default.
- W4229062308 title "Automatic liver tumor segmentation from CT images using hierarchical iterative superpixels and local statistical features" @default.
- W4229062308 cites W1966707541 @default.
- W4229062308 cites W2003258143 @default.
- W4229062308 cites W2028877451 @default.
- W4229062308 cites W2050302867 @default.
- W4229062308 cites W2118246710 @default.
- W4229062308 cites W2136922672 @default.
- W4229062308 cites W2600979969 @default.
- W4229062308 cites W2796630897 @default.
- W4229062308 cites W2899279931 @default.
- W4229062308 cites W2916686134 @default.
- W4229062308 cites W2951064851 @default.
- W4229062308 cites W2964227007 @default.
- W4229062308 cites W2964309882 @default.
- W4229062308 cites W2986785750 @default.
- W4229062308 cites W2990472987 @default.
- W4229062308 cites W2991158848 @default.
- W4229062308 cites W2996131899 @default.
- W4229062308 cites W2996290406 @default.
- W4229062308 cites W3001375391 @default.
- W4229062308 cites W3007184303 @default.
- W4229062308 cites W3036374935 @default.
- W4229062308 cites W3044830147 @default.
- W4229062308 cites W3087229103 @default.
- W4229062308 cites W3093381054 @default.
- W4229062308 cites W3096648453 @default.
- W4229062308 cites W3112701542 @default.
- W4229062308 cites W3113352306 @default.
- W4229062308 cites W3133325202 @default.
- W4229062308 cites W3159065509 @default.
- W4229062308 cites W3166758207 @default.
- W4229062308 cites W4206232989 @default.
- W4229062308 doi "https://doi.org/10.1016/j.eswa.2022.117347" @default.
- W4229062308 hasPublicationYear "2022" @default.
- W4229062308 type Work @default.
- W4229062308 citedByCount "8" @default.
- W4229062308 countsByYear W42290623082023 @default.
- W4229062308 crossrefType "journal-article" @default.
- W4229062308 hasAuthorship W4229062308A5044278113 @default.
- W4229062308 hasAuthorship W4229062308A5047200850 @default.
- W4229062308 hasAuthorship W4229062308A5047986262 @default.
- W4229062308 hasAuthorship W4229062308A5053378837 @default.
- W4229062308 hasAuthorship W4229062308A5070897418 @default.
- W4229062308 hasConcept C12267149 @default.
- W4229062308 hasConcept C124504099 @default.
- W4229062308 hasConcept C153180895 @default.
- W4229062308 hasConcept C154945302 @default.
- W4229062308 hasConcept C160633673 @default.
- W4229062308 hasConcept C31972630 @default.
- W4229062308 hasConcept C41008148 @default.
- W4229062308 hasConcept C89600930 @default.
- W4229062308 hasConceptScore W4229062308C12267149 @default.
- W4229062308 hasConceptScore W4229062308C124504099 @default.
- W4229062308 hasConceptScore W4229062308C153180895 @default.
- W4229062308 hasConceptScore W4229062308C154945302 @default.
- W4229062308 hasConceptScore W4229062308C160633673 @default.
- W4229062308 hasConceptScore W4229062308C31972630 @default.
- W4229062308 hasConceptScore W4229062308C41008148 @default.
- W4229062308 hasConceptScore W4229062308C89600930 @default.
- W4229062308 hasLocation W42290623081 @default.
- W4229062308 hasOpenAccess W4229062308 @default.
- W4229062308 hasPrimaryLocation W42290623081 @default.
- W4229062308 hasRelatedWork W121273120 @default.
- W4229062308 hasRelatedWork W1669643531 @default.
- W4229062308 hasRelatedWork W2005437358 @default.
- W4229062308 hasRelatedWork W2008656436 @default.
- W4229062308 hasRelatedWork W2023558673 @default.
- W4229062308 hasRelatedWork W2134924024 @default.
- W4229062308 hasRelatedWork W2337415362 @default.
- W4229062308 hasRelatedWork W2517104666 @default.
- W4229062308 hasRelatedWork W2740820121 @default.
- W4229062308 hasRelatedWork W4312857205 @default.
- W4229062308 hasVolume "203" @default.
- W4229062308 isParatext "false" @default.
- W4229062308 isRetracted "false" @default.
- W4229062308 workType "article" @default.