Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229069564> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4229069564 abstract "The SARS-COV-2 virus and its variants pose extraordinary challenges for public health worldwide. Timely and accurate forecasting of the COVID-19 epidemic is key to sustaining interventions and policies and efficient resource allocation. Internet-based data sources have shown great potential to supplement traditional infectious disease surveillance, and the combination of different Internet-based data sources has shown greater power to enhance epidemic forecasting accuracy than using a single Internet-based data source. However, existing methods incorporating multiple Internet-based data sources only used real-time data from these sources as exogenous inputs but did not take all the historical data into account. Moreover, the predictive power of different Internet-based data sources in providing early warning for COVID-19 outbreaks has not been fully explored.The main aim of our study is to explore whether combining real-time and historical data from multiple Internet-based sources could improve the COVID-19 forecasting accuracy over the existing baseline models. A secondary aim is to explore the COVID-19 forecasting timeliness based on different Internet-based data sources.We first used core terms and symptom-related keyword-based methods to extract COVID-19-related Internet-based data from December 21, 2019, to February 29, 2020. The Internet-based data we explored included 90,493,912 online news articles, 37,401,900 microblogs, and all the Baidu search query data during that period. We then proposed an autoregressive model with exogenous inputs, incorporating real-time and historical data from multiple Internet-based sources. Our proposed model was compared with baseline models, and all the models were tested during the first wave of COVID-19 epidemics in Hubei province and the rest of mainland China separately. We also used lagged Pearson correlations for COVID-19 forecasting timeliness analysis.Our proposed model achieved the highest accuracy in all 5 accuracy measures, compared with all the baseline models of both Hubei province and the rest of mainland China. In mainland China, except for Hubei, the COVID-19 epidemic forecasting accuracy differences between our proposed model (model i) and all the other baseline models were statistically significant (model 1, t198=-8.722, P<.001; model 2, t198=-5.000, P<.001, model 3, t198=-1.882, P=.06; model 4, t198=-4.644, P<.001; model 5, t198=-4.488, P<.001). In Hubei province, our proposed model's forecasting accuracy improved significantly compared with the baseline model using historical new confirmed COVID-19 case counts only (model 1, t198=-1.732, P=.09). Our results also showed that Internet-based sources could provide a 2- to 6-day earlier warning for COVID-19 outbreaks.Our approach incorporating real-time and historical data from multiple Internet-based sources could improve forecasting accuracy for epidemics of COVID-19 and its variants, which may help improve public health agencies' interventions and resource allocation in mitigating and controlling new waves of COVID-19 or other relevant epidemics." @default.
- W4229069564 created "2022-05-08" @default.
- W4229069564 creator A5002627367 @default.
- W4229069564 creator A5010986657 @default.
- W4229069564 creator A5039758955 @default.
- W4229069564 creator A5048763356 @default.
- W4229069564 creator A5053863846 @default.
- W4229069564 creator A5061838242 @default.
- W4229069564 date "2021-11-29" @default.
- W4229069564 modified "2023-09-23" @default.
- W4229069564 title "Enhancing COVID-19 Epidemics Forecasting Accuracy by Combining Real-time and Historical Data from Multiple Internet-based Sources: Analysis of Social Media Data, Online News Articles, and Search Queries (Preprint)" @default.
- W4229069564 cites W1831050183 @default.
- W4229069564 cites W2004480482 @default.
- W4229069564 cites W2033640210 @default.
- W4229069564 cites W2036870214 @default.
- W4229069564 cites W2058246047 @default.
- W4229069564 cites W2068181924 @default.
- W4229069564 cites W2080091258 @default.
- W4229069564 cites W2117239687 @default.
- W4229069564 cites W2124170079 @default.
- W4229069564 cites W2130094219 @default.
- W4229069564 cites W2134624036 @default.
- W4229069564 cites W2134836760 @default.
- W4229069564 cites W2408299270 @default.
- W4229069564 cites W2487770199 @default.
- W4229069564 cites W2496114304 @default.
- W4229069564 cites W2513457109 @default.
- W4229069564 cites W2572954810 @default.
- W4229069564 cites W2615868739 @default.
- W4229069564 cites W2742004969 @default.
- W4229069564 cites W2945054730 @default.
- W4229069564 cites W3011486546 @default.
- W4229069564 cites W3013056994 @default.
- W4229069564 cites W3013627785 @default.
- W4229069564 cites W3016400458 @default.
- W4229069564 cites W3016540417 @default.
- W4229069564 cites W3017136590 @default.
- W4229069564 cites W3036744098 @default.
- W4229069564 cites W3039050487 @default.
- W4229069564 cites W3042561439 @default.
- W4229069564 cites W3046850558 @default.
- W4229069564 cites W3047626285 @default.
- W4229069564 cites W3095874921 @default.
- W4229069564 cites W3104749795 @default.
- W4229069564 cites W3121587504 @default.
- W4229069564 cites W3152872298 @default.
- W4229069564 cites W3153744412 @default.
- W4229069564 cites W3157166661 @default.
- W4229069564 cites W3174364388 @default.
- W4229069564 cites W3177494965 @default.
- W4229069564 cites W4200490644 @default.
- W4229069564 cites W4205225613 @default.
- W4229069564 cites W4213024863 @default.
- W4229069564 cites W4231087369 @default.
- W4229069564 cites W4232801011 @default.
- W4229069564 cites W4233335631 @default.
- W4229069564 cites W4251527023 @default.
- W4229069564 doi "https://doi.org/10.2196/35266" @default.
- W4229069564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35507921" @default.
- W4229069564 hasPublicationYear "2021" @default.
- W4229069564 type Work @default.
- W4229069564 citedByCount "0" @default.
- W4229069564 crossrefType "journal-article" @default.
- W4229069564 hasAuthorship W4229069564A5002627367 @default.
- W4229069564 hasAuthorship W4229069564A5010986657 @default.
- W4229069564 hasAuthorship W4229069564A5039758955 @default.
- W4229069564 hasAuthorship W4229069564A5048763356 @default.
- W4229069564 hasAuthorship W4229069564A5053863846 @default.
- W4229069564 hasAuthorship W4229069564A5061838242 @default.
- W4229069564 hasBestOaLocation W42290695641 @default.
- W4229069564 hasConcept C110875604 @default.
- W4229069564 hasConcept C124101348 @default.
- W4229069564 hasConcept C136764020 @default.
- W4229069564 hasConcept C2522767166 @default.
- W4229069564 hasConcept C41008148 @default.
- W4229069564 hasConcept C518677369 @default.
- W4229069564 hasConceptScore W4229069564C110875604 @default.
- W4229069564 hasConceptScore W4229069564C124101348 @default.
- W4229069564 hasConceptScore W4229069564C136764020 @default.
- W4229069564 hasConceptScore W4229069564C2522767166 @default.
- W4229069564 hasConceptScore W4229069564C41008148 @default.
- W4229069564 hasConceptScore W4229069564C518677369 @default.
- W4229069564 hasLocation W42290695641 @default.
- W4229069564 hasLocation W42290695642 @default.
- W4229069564 hasLocation W42290695643 @default.
- W4229069564 hasOpenAccess W4229069564 @default.
- W4229069564 hasPrimaryLocation W42290695641 @default.
- W4229069564 hasRelatedWork W1842829573 @default.
- W4229069564 hasRelatedWork W1871685927 @default.
- W4229069564 hasRelatedWork W2377037101 @default.
- W4229069564 hasRelatedWork W2496949096 @default.
- W4229069564 hasRelatedWork W2894226949 @default.
- W4229069564 hasRelatedWork W3014344111 @default.
- W4229069564 hasRelatedWork W374414124 @default.
- W4229069564 hasRelatedWork W4206093644 @default.
- W4229069564 hasRelatedWork W4250063312 @default.
- W4229069564 hasRelatedWork W604801844 @default.
- W4229069564 isParatext "false" @default.
- W4229069564 isRetracted "false" @default.
- W4229069564 workType "article" @default.