Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229069867> ?p ?o ?g. }
Showing items 1 to 42 of
42
with 100 items per page.
- W4229069867 endingPage "129" @default.
- W4229069867 startingPage "95" @default.
- W4229069867 abstract "The term “learning” relate to a broad range of processes that can be defined as “knowledge or skill acquired by instruction or study.” Psychologists study learning in both humans and animals, but in this chapter, the authors focused on learning in machines and how this process has evolved during the last 60 years and found important applications in medical image processing. The author discussed how computational models built to understand human learning have led to two main categories of machine learning: supervised learning and unsupervised learning. They also presented the concepts of deep learning and how it is beginning to play a vital role in medical image processing. To help researchers interested in applying machine learning to medical imaging data, they have provided information about different data formats and available resources to analyze these data. The chapter concludes with a discussion of how machine learning is expected to continue to play an important role in medical image processing and, combined with a doctor’s experience, will help improve medical outcomes." @default.
- W4229069867 created "2022-05-08" @default.
- W4229069867 creator A5010490290 @default.
- W4229069867 creator A5013912100 @default.
- W4229069867 date "2022-05-06" @default.
- W4229069867 modified "2023-09-26" @default.
- W4229069867 title "Machine Learning Applications In Medical Image Processing" @default.
- W4229069867 doi "https://doi.org/10.1201/9781003190011-5" @default.
- W4229069867 hasPublicationYear "2022" @default.
- W4229069867 type Work @default.
- W4229069867 citedByCount "0" @default.
- W4229069867 crossrefType "book-chapter" @default.
- W4229069867 hasAuthorship W4229069867A5010490290 @default.
- W4229069867 hasAuthorship W4229069867A5013912100 @default.
- W4229069867 hasConcept C115961682 @default.
- W4229069867 hasConcept C154945302 @default.
- W4229069867 hasConcept C31972630 @default.
- W4229069867 hasConcept C41008148 @default.
- W4229069867 hasConcept C9417928 @default.
- W4229069867 hasConceptScore W4229069867C115961682 @default.
- W4229069867 hasConceptScore W4229069867C154945302 @default.
- W4229069867 hasConceptScore W4229069867C31972630 @default.
- W4229069867 hasConceptScore W4229069867C41008148 @default.
- W4229069867 hasConceptScore W4229069867C9417928 @default.
- W4229069867 hasLocation W42290698671 @default.
- W4229069867 hasOpenAccess W4229069867 @default.
- W4229069867 hasPrimaryLocation W42290698671 @default.
- W4229069867 hasRelatedWork W2005185696 @default.
- W4229069867 hasRelatedWork W2080322084 @default.
- W4229069867 hasRelatedWork W2161229648 @default.
- W4229069867 hasRelatedWork W2235753890 @default.
- W4229069867 hasRelatedWork W23451984 @default.
- W4229069867 hasRelatedWork W2361114818 @default.
- W4229069867 hasRelatedWork W2993674027 @default.
- W4229069867 hasRelatedWork W3003164983 @default.
- W4229069867 hasRelatedWork W3214851576 @default.
- W4229069867 hasRelatedWork W2507763083 @default.
- W4229069867 isParatext "false" @default.
- W4229069867 isRetracted "false" @default.
- W4229069867 workType "book-chapter" @default.