Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229071766> ?p ?o ?g. }
- W4229071766 endingPage "1299" @default.
- W4229071766 startingPage "1289" @default.
- W4229071766 abstract "Diffuse optical tomography (DOT) utilises near-infrared light for imaging spatially distributed optical parameters, typically the absorption and scattering coefficients. The image reconstruction problem of DOT is an ill-posed inverse problem, due to the non-linear light propagation in tissues and limited boundary measurements. The ill-posedness means that the image reconstruction is sensitive to measurement and modelling errors. The Bayesian approach for the inverse problem of DOT offers the possibility of incorporating prior information about the unknowns, rendering the problem less ill-posed. It also allows marginalisation of modelling errors utilising the so-called Bayesian approximation error method. A more recent trend in image reconstruction techniques is the use of deep learning, which has shown promising results in various applications from image processing to tomographic reconstructions. In this work, we study the non-linear DOT inverse problem of estimating the (absolute) absorption and scattering coefficients utilising a 'model-based' learning approach, essentially intertwining learned components with the model equations of DOT. The proposed approach was validated with 2D simulations and 3D experimental data. We demonstrated improved absorption and scattering estimates for targets with a mix of smooth and sharp image features, implying that the proposed approach could learn image features that are difficult to model using standard Gaussian priors. Furthermore, it was shown that the approach can be utilised in compensating for modelling errors due to coarse discretisation enabling computationally efficient solutions. Overall, the approach provided improved computation times compared to a standard Gauss-Newton iteration." @default.
- W4229071766 created "2022-05-08" @default.
- W4229071766 creator A5025562527 @default.
- W4229071766 creator A5037997314 @default.
- W4229071766 creator A5041227302 @default.
- W4229071766 creator A5052463438 @default.
- W4229071766 creator A5082445591 @default.
- W4229071766 date "2022-05-01" @default.
- W4229071766 modified "2023-10-15" @default.
- W4229071766 title "A Model-Based Iterative Learning Approach for Diffuse Optical Tomography" @default.
- W4229071766 cites W1839237759 @default.
- W4229071766 cites W1970817606 @default.
- W4229071766 cites W1996632146 @default.
- W4229071766 cites W2009814556 @default.
- W4229071766 cites W2014854214 @default.
- W4229071766 cites W2024841749 @default.
- W4229071766 cites W2033106066 @default.
- W4229071766 cites W2037901648 @default.
- W4229071766 cites W2052759963 @default.
- W4229071766 cites W2069009977 @default.
- W4229071766 cites W2071706611 @default.
- W4229071766 cites W2085771195 @default.
- W4229071766 cites W2097683070 @default.
- W4229071766 cites W2102994171 @default.
- W4229071766 cites W2103559027 @default.
- W4229071766 cites W2117025652 @default.
- W4229071766 cites W2126167415 @default.
- W4229071766 cites W2136102531 @default.
- W4229071766 cites W2136956182 @default.
- W4229071766 cites W2143163067 @default.
- W4229071766 cites W2154159177 @default.
- W4229071766 cites W2289498849 @default.
- W4229071766 cites W2460841889 @default.
- W4229071766 cites W2465505234 @default.
- W4229071766 cites W2574952845 @default.
- W4229071766 cites W2594014149 @default.
- W4229071766 cites W2604388535 @default.
- W4229071766 cites W2751563926 @default.
- W4229071766 cites W2767248316 @default.
- W4229071766 cites W2808243856 @default.
- W4229071766 cites W2905825954 @default.
- W4229071766 cites W2911330094 @default.
- W4229071766 cites W2945279451 @default.
- W4229071766 cites W2963231761 @default.
- W4229071766 cites W2974799347 @default.
- W4229071766 cites W2991319547 @default.
- W4229071766 cites W2998199538 @default.
- W4229071766 cites W3032809961 @default.
- W4229071766 cites W3085814690 @default.
- W4229071766 cites W3100810380 @default.
- W4229071766 cites W3101765447 @default.
- W4229071766 cites W3104324122 @default.
- W4229071766 cites W3122711257 @default.
- W4229071766 cites W3140349852 @default.
- W4229071766 doi "https://doi.org/10.1109/tmi.2021.3136461" @default.
- W4229071766 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34914584" @default.
- W4229071766 hasPublicationYear "2022" @default.
- W4229071766 type Work @default.
- W4229071766 citedByCount "10" @default.
- W4229071766 countsByYear W42290717662021 @default.
- W4229071766 countsByYear W42290717662023 @default.
- W4229071766 crossrefType "journal-article" @default.
- W4229071766 hasAuthorship W4229071766A5025562527 @default.
- W4229071766 hasAuthorship W4229071766A5037997314 @default.
- W4229071766 hasAuthorship W4229071766A5041227302 @default.
- W4229071766 hasAuthorship W4229071766A5052463438 @default.
- W4229071766 hasAuthorship W4229071766A5082445591 @default.
- W4229071766 hasBestOaLocation W42290717661 @default.
- W4229071766 hasConcept C107673813 @default.
- W4229071766 hasConcept C11413529 @default.
- W4229071766 hasConcept C120665830 @default.
- W4229071766 hasConcept C121332964 @default.
- W4229071766 hasConcept C134306372 @default.
- W4229071766 hasConcept C135252773 @default.
- W4229071766 hasConcept C141379421 @default.
- W4229071766 hasConcept C145417883 @default.
- W4229071766 hasConcept C154945302 @default.
- W4229071766 hasConcept C163716698 @default.
- W4229071766 hasConcept C177769412 @default.
- W4229071766 hasConcept C33923547 @default.
- W4229071766 hasConcept C41008148 @default.
- W4229071766 hasConcept C73000952 @default.
- W4229071766 hasConcept C97742081 @default.
- W4229071766 hasConceptScore W4229071766C107673813 @default.
- W4229071766 hasConceptScore W4229071766C11413529 @default.
- W4229071766 hasConceptScore W4229071766C120665830 @default.
- W4229071766 hasConceptScore W4229071766C121332964 @default.
- W4229071766 hasConceptScore W4229071766C134306372 @default.
- W4229071766 hasConceptScore W4229071766C135252773 @default.
- W4229071766 hasConceptScore W4229071766C141379421 @default.
- W4229071766 hasConceptScore W4229071766C145417883 @default.
- W4229071766 hasConceptScore W4229071766C154945302 @default.
- W4229071766 hasConceptScore W4229071766C163716698 @default.
- W4229071766 hasConceptScore W4229071766C177769412 @default.
- W4229071766 hasConceptScore W4229071766C33923547 @default.
- W4229071766 hasConceptScore W4229071766C41008148 @default.
- W4229071766 hasConceptScore W4229071766C73000952 @default.
- W4229071766 hasConceptScore W4229071766C97742081 @default.