Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229079441> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4229079441 endingPage "106822" @default.
- W4229079441 startingPage "106822" @default.
- W4229079441 abstract "Enhancers are non-coding DAN fragments that play key roles in gene regulations and can promote the transcription of structural genes, thereby affecting the expression of structural protein catalytic enzymes and regulatory proteins. Accurate identification of enhancers helps to understand the transcription of structural genes and the development of human tumorigenesis, diagnosis and treatment. The enhancer sequences have high position variations and dispersions, and the identification of enhancers is more challenging than other genetic factors. Based on word embedding and sequence generative adversarial networks, a deep learning framework for enhancer identification is proposed. Firstly, considering the small number of sequences in the benchmark dataset, RankGAN is used to amplify the dataset size while maintaining the data characteristics. Then, in view of the similarity between DNA sequence and natural language, DNA sequence is regarded as a sentence composed of multiple words, and the word embedding technology FastText is applied to transform it into a numerical matrix. To extract the dependencies and highly abstract features of nucleotides in DNA sequences, a Long Short-Term Memory Convolutional Neural network (LSTM-CNN) is constructed to perform the identification task. On the independent test set, the accuracy and Matthew's correlation coefficient (MCC) for enhancer prediction are 0.7525 and 0.5051, respectively. For the enhancer type prediction, the accuracy and MCC of this method are 0.6972 and 0.3954, respectively. Compared with existing methods, this method achieves more satisfactory results for the prediction of enhancers and their types. This study will further enrich the application of natural language processing in bioinformatics." @default.
- W4229079441 created "2022-05-08" @default.
- W4229079441 creator A5026380838 @default.
- W4229079441 creator A5045824135 @default.
- W4229079441 creator A5086029844 @default.
- W4229079441 date "2022-07-01" @default.
- W4229079441 modified "2023-10-17" @default.
- W4229079441 title "A deep learning framework for enhancer prediction using word embedding and sequence generation" @default.
- W4229079441 cites W1501531009 @default.
- W4229079441 cites W1807324513 @default.
- W4229079441 cites W1977855308 @default.
- W4229079441 cites W1988581590 @default.
- W4229079441 cites W2034070267 @default.
- W4229079441 cites W2073700708 @default.
- W4229079441 cites W2253429366 @default.
- W4229079441 cites W2313411748 @default.
- W4229079441 cites W2336509392 @default.
- W4229079441 cites W2338148720 @default.
- W4229079441 cites W2409095766 @default.
- W4229079441 cites W2493916176 @default.
- W4229079441 cites W2518319998 @default.
- W4229079441 cites W2735099323 @default.
- W4229079441 cites W2767199852 @default.
- W4229079441 cites W2800857888 @default.
- W4229079441 cites W2802078840 @default.
- W4229079441 cites W2802765514 @default.
- W4229079441 cites W2807186140 @default.
- W4229079441 cites W2884001105 @default.
- W4229079441 cites W2944682099 @default.
- W4229079441 cites W2996783813 @default.
- W4229079441 doi "https://doi.org/10.1016/j.bpc.2022.106822" @default.
- W4229079441 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35605495" @default.
- W4229079441 hasPublicationYear "2022" @default.
- W4229079441 type Work @default.
- W4229079441 citedByCount "5" @default.
- W4229079441 countsByYear W42290794412023 @default.
- W4229079441 crossrefType "journal-article" @default.
- W4229079441 hasAuthorship W4229079441A5026380838 @default.
- W4229079441 hasAuthorship W4229079441A5045824135 @default.
- W4229079441 hasAuthorship W4229079441A5086029844 @default.
- W4229079441 hasConcept C104317684 @default.
- W4229079441 hasConcept C108583219 @default.
- W4229079441 hasConcept C111936080 @default.
- W4229079441 hasConcept C119857082 @default.
- W4229079441 hasConcept C153180895 @default.
- W4229079441 hasConcept C154945302 @default.
- W4229079441 hasConcept C41008148 @default.
- W4229079441 hasConcept C41608201 @default.
- W4229079441 hasConcept C54355233 @default.
- W4229079441 hasConcept C70721500 @default.
- W4229079441 hasConcept C86339819 @default.
- W4229079441 hasConcept C86803240 @default.
- W4229079441 hasConceptScore W4229079441C104317684 @default.
- W4229079441 hasConceptScore W4229079441C108583219 @default.
- W4229079441 hasConceptScore W4229079441C111936080 @default.
- W4229079441 hasConceptScore W4229079441C119857082 @default.
- W4229079441 hasConceptScore W4229079441C153180895 @default.
- W4229079441 hasConceptScore W4229079441C154945302 @default.
- W4229079441 hasConceptScore W4229079441C41008148 @default.
- W4229079441 hasConceptScore W4229079441C41608201 @default.
- W4229079441 hasConceptScore W4229079441C54355233 @default.
- W4229079441 hasConceptScore W4229079441C70721500 @default.
- W4229079441 hasConceptScore W4229079441C86339819 @default.
- W4229079441 hasConceptScore W4229079441C86803240 @default.
- W4229079441 hasFunder F4320324174 @default.
- W4229079441 hasLocation W42290794411 @default.
- W4229079441 hasLocation W42290794412 @default.
- W4229079441 hasOpenAccess W4229079441 @default.
- W4229079441 hasPrimaryLocation W42290794411 @default.
- W4229079441 hasRelatedWork W2061914098 @default.
- W4229079441 hasRelatedWork W2113330652 @default.
- W4229079441 hasRelatedWork W2118646732 @default.
- W4229079441 hasRelatedWork W2972483091 @default.
- W4229079441 hasRelatedWork W4283022034 @default.
- W4229079441 hasRelatedWork W4303699336 @default.
- W4229079441 hasRelatedWork W4309683845 @default.
- W4229079441 hasRelatedWork W4378781551 @default.
- W4229079441 hasRelatedWork W4380075502 @default.
- W4229079441 hasRelatedWork W4387565139 @default.
- W4229079441 hasVolume "286" @default.
- W4229079441 isParatext "false" @default.
- W4229079441 isRetracted "false" @default.
- W4229079441 workType "article" @default.