Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229081567> ?p ?o ?g. }
- W4229081567 endingPage "V396" @default.
- W4229081567 startingPage "V381" @default.
- W4229081567 abstract "The local orthogonalization (LO) approach has been broadly applied to attenuate random noise and deal with the signal-leakage problem induced using the traditional denoising schemes. First, this approach removes noise and applies the LO weight (LOW) operator to the originally estimated signal. Then, the signal leakage is predicted and subsequently recovered from the original noise component. Finally, the original denoised component and the recovered signal are mixed to output the denoised seismic signal. However, this approach has limits when the seismic data include random and erratic noise. We find that this shortcoming is mainly caused by the weakness of the traditional denoising operators (e.g., curvelet and f- x deconvolution methods), which are insufficient to adapt themselves to the originally denoised signal and noise sections for the LOW process. Therefore, we aim to attenuate random and erratic noise using an adaptive LO method. By mixing the hard thresholding (HT) operator and the exponential moving-average (EMA) filter, we have developed a novel operator, which we call the HTEMA operator. Then, by introducing this novel operator into the curvelet method framework, we adapt the initially denoised signal and noise sections for the LOW process. The proposed operator is applied to the frequency domain curvelet coefficients provided by the inverse transform. Then, we use the LOW operator to compensate for the damage of useful signals. The proposed approach is not limited to the curvelet method but can be applied to other traditional denoising methods. We estimate the noise attenuation performance by the visual inspections, local similarity maps, and the signal-to-noise ratio. Synthetic and field data examples indicate the effectiveness of the proposed method in applications to erratic and random noise attenuation compared with the curvelet, f- x deconvolution, and the LO methods." @default.
- W4229081567 created "2022-05-08" @default.
- W4229081567 creator A5018916500 @default.
- W4229081567 creator A5019972279 @default.
- W4229081567 creator A5042175903 @default.
- W4229081567 creator A5046681783 @default.
- W4229081567 creator A5086934108 @default.
- W4229081567 date "2022-06-27" @default.
- W4229081567 modified "2023-09-30" @default.
- W4229081567 title "Erratic and random noise attenuation using adaptive local orthogonalization" @default.
- W4229081567 cites W1973540739 @default.
- W4229081567 cites W1974581749 @default.
- W4229081567 cites W1996098514 @default.
- W4229081567 cites W2002256627 @default.
- W4229081567 cites W2007938736 @default.
- W4229081567 cites W2020205028 @default.
- W4229081567 cites W2021734622 @default.
- W4229081567 cites W2076393573 @default.
- W4229081567 cites W2086288874 @default.
- W4229081567 cites W2104556971 @default.
- W4229081567 cites W2115528090 @default.
- W4229081567 cites W2126720920 @default.
- W4229081567 cites W2138354688 @default.
- W4229081567 cites W2141953966 @default.
- W4229081567 cites W2145096794 @default.
- W4229081567 cites W2146305038 @default.
- W4229081567 cites W2152582233 @default.
- W4229081567 cites W2161453752 @default.
- W4229081567 cites W2168396269 @default.
- W4229081567 cites W2169894018 @default.
- W4229081567 cites W2177432006 @default.
- W4229081567 cites W2318528603 @default.
- W4229081567 cites W2403089413 @default.
- W4229081567 cites W2463531433 @default.
- W4229081567 cites W2468203014 @default.
- W4229081567 cites W2475005008 @default.
- W4229081567 cites W2518468762 @default.
- W4229081567 cites W2533912578 @default.
- W4229081567 cites W2555680306 @default.
- W4229081567 cites W2744272590 @default.
- W4229081567 cites W2796445688 @default.
- W4229081567 cites W3088102248 @default.
- W4229081567 cites W3111925087 @default.
- W4229081567 cites W3128525917 @default.
- W4229081567 cites W2807801272 @default.
- W4229081567 doi "https://doi.org/10.1190/geo2021-0785.1" @default.
- W4229081567 hasPublicationYear "2022" @default.
- W4229081567 type Work @default.
- W4229081567 citedByCount "2" @default.
- W4229081567 countsByYear W42290815672023 @default.
- W4229081567 crossrefType "journal-article" @default.
- W4229081567 hasAuthorship W4229081567A5018916500 @default.
- W4229081567 hasAuthorship W4229081567A5019972279 @default.
- W4229081567 hasAuthorship W4229081567A5042175903 @default.
- W4229081567 hasAuthorship W4229081567A5046681783 @default.
- W4229081567 hasAuthorship W4229081567A5086934108 @default.
- W4229081567 hasConcept C104317684 @default.
- W4229081567 hasConcept C11413529 @default.
- W4229081567 hasConcept C115961682 @default.
- W4229081567 hasConcept C131720326 @default.
- W4229081567 hasConcept C153180895 @default.
- W4229081567 hasConcept C154945302 @default.
- W4229081567 hasConcept C158448853 @default.
- W4229081567 hasConcept C163294075 @default.
- W4229081567 hasConcept C17020691 @default.
- W4229081567 hasConcept C185592680 @default.
- W4229081567 hasConcept C191178318 @default.
- W4229081567 hasConcept C196216189 @default.
- W4229081567 hasConcept C199360897 @default.
- W4229081567 hasConcept C2779843651 @default.
- W4229081567 hasConcept C33923547 @default.
- W4229081567 hasConcept C41008148 @default.
- W4229081567 hasConcept C47432892 @default.
- W4229081567 hasConcept C47559304 @default.
- W4229081567 hasConcept C55493867 @default.
- W4229081567 hasConcept C86339819 @default.
- W4229081567 hasConcept C99498987 @default.
- W4229081567 hasConceptScore W4229081567C104317684 @default.
- W4229081567 hasConceptScore W4229081567C11413529 @default.
- W4229081567 hasConceptScore W4229081567C115961682 @default.
- W4229081567 hasConceptScore W4229081567C131720326 @default.
- W4229081567 hasConceptScore W4229081567C153180895 @default.
- W4229081567 hasConceptScore W4229081567C154945302 @default.
- W4229081567 hasConceptScore W4229081567C158448853 @default.
- W4229081567 hasConceptScore W4229081567C163294075 @default.
- W4229081567 hasConceptScore W4229081567C17020691 @default.
- W4229081567 hasConceptScore W4229081567C185592680 @default.
- W4229081567 hasConceptScore W4229081567C191178318 @default.
- W4229081567 hasConceptScore W4229081567C196216189 @default.
- W4229081567 hasConceptScore W4229081567C199360897 @default.
- W4229081567 hasConceptScore W4229081567C2779843651 @default.
- W4229081567 hasConceptScore W4229081567C33923547 @default.
- W4229081567 hasConceptScore W4229081567C41008148 @default.
- W4229081567 hasConceptScore W4229081567C47432892 @default.
- W4229081567 hasConceptScore W4229081567C47559304 @default.
- W4229081567 hasConceptScore W4229081567C55493867 @default.
- W4229081567 hasConceptScore W4229081567C86339819 @default.
- W4229081567 hasConceptScore W4229081567C99498987 @default.