Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229081768> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4229081768 abstract "We generalize the van Est map and isomorphism theorem in three ways, and we discuss conjectured connections with homotopy theory, including a proposal of a category which unifies differentiable stacks, Lie algebroids and homotopy theory. In Part 2 of this thesis we generalize the van Est map from a comparison map between Lie groupoid cohomology and Lie algebroid cohomology to a (more conceptual) comparison map between the cohomology of a stack $mathcal{G}$ and the cohomology of a simple foliation $mathcal{H}tomathcal{G}$. In Part 1 we generalize the functions that we can take cohomology of in the context of the van Est map. Instead of using functions valued in representations, we can use functions valued in modules, eg. we can use $S^1$-valued functions and $mathbb{Z}$-valued functions. Finally, everything we do works in both the smooth and holomorphic categories. These generalizations allow us to derive results, including classical ones, that could not be obtained with the usual van Est map, and they give a new method of computing cohomology. Part 3 of this thesis involves a proposal of a definition of Morita equivalences in the categories of Lie algebroids and LA-groupoids. What we find is that our proposed category of LA-groupoids unifies differentiable stacks, Lie algebroids and homotopy theory. In particular, there are morphisms between Lie algebroids and Lie groupoids and we show that such objects can be Morita equivalent. This gives another interpretation of the van Est map. Using this category, we argue that a classifying space for $G$ is just a space which is homotopy equivalent it. We discuss higher generalized morphisms (given by gerbes) and we conjecture the existence of a smooth version of Grothendieck's homotopy hypothesis." @default.
- W4229081768 created "2022-05-08" @default.
- W4229081768 creator A5067713474 @default.
- W4229081768 date "2022-05-04" @default.
- W4229081768 modified "2023-09-26" @default.
- W4229081768 title "The van Est Map on Geometric Stacks" @default.
- W4229081768 doi "https://doi.org/10.48550/arxiv.2205.02109" @default.
- W4229081768 hasPublicationYear "2022" @default.
- W4229081768 type Work @default.
- W4229081768 citedByCount "0" @default.
- W4229081768 crossrefType "posted-content" @default.
- W4229081768 hasAuthorship W4229081768A5067713474 @default.
- W4229081768 hasBestOaLocation W42290817681 @default.
- W4229081768 hasConcept C111472728 @default.
- W4229081768 hasConcept C115624301 @default.
- W4229081768 hasConcept C136119220 @default.
- W4229081768 hasConcept C137212723 @default.
- W4229081768 hasConcept C138885662 @default.
- W4229081768 hasConcept C151730666 @default.
- W4229081768 hasConcept C185592680 @default.
- W4229081768 hasConcept C202444582 @default.
- W4229081768 hasConcept C203436722 @default.
- W4229081768 hasConcept C2776503324 @default.
- W4229081768 hasConcept C2779343474 @default.
- W4229081768 hasConcept C2780586882 @default.
- W4229081768 hasConcept C33923547 @default.
- W4229081768 hasConcept C51568863 @default.
- W4229081768 hasConcept C5961521 @default.
- W4229081768 hasConcept C64694042 @default.
- W4229081768 hasConcept C78606066 @default.
- W4229081768 hasConcept C8010536 @default.
- W4229081768 hasConcept C86803240 @default.
- W4229081768 hasConceptScore W4229081768C111472728 @default.
- W4229081768 hasConceptScore W4229081768C115624301 @default.
- W4229081768 hasConceptScore W4229081768C136119220 @default.
- W4229081768 hasConceptScore W4229081768C137212723 @default.
- W4229081768 hasConceptScore W4229081768C138885662 @default.
- W4229081768 hasConceptScore W4229081768C151730666 @default.
- W4229081768 hasConceptScore W4229081768C185592680 @default.
- W4229081768 hasConceptScore W4229081768C202444582 @default.
- W4229081768 hasConceptScore W4229081768C203436722 @default.
- W4229081768 hasConceptScore W4229081768C2776503324 @default.
- W4229081768 hasConceptScore W4229081768C2779343474 @default.
- W4229081768 hasConceptScore W4229081768C2780586882 @default.
- W4229081768 hasConceptScore W4229081768C33923547 @default.
- W4229081768 hasConceptScore W4229081768C51568863 @default.
- W4229081768 hasConceptScore W4229081768C5961521 @default.
- W4229081768 hasConceptScore W4229081768C64694042 @default.
- W4229081768 hasConceptScore W4229081768C78606066 @default.
- W4229081768 hasConceptScore W4229081768C8010536 @default.
- W4229081768 hasConceptScore W4229081768C86803240 @default.
- W4229081768 hasLocation W42290817681 @default.
- W4229081768 hasOpenAccess W4229081768 @default.
- W4229081768 hasPrimaryLocation W42290817681 @default.
- W4229081768 hasRelatedWork W1992729023 @default.
- W4229081768 hasRelatedWork W2008218939 @default.
- W4229081768 hasRelatedWork W2280648233 @default.
- W4229081768 hasRelatedWork W2746938774 @default.
- W4229081768 hasRelatedWork W2759836723 @default.
- W4229081768 hasRelatedWork W2889252859 @default.
- W4229081768 hasRelatedWork W2949522908 @default.
- W4229081768 hasRelatedWork W2950452505 @default.
- W4229081768 hasRelatedWork W3165316878 @default.
- W4229081768 hasRelatedWork W4229081768 @default.
- W4229081768 isParatext "false" @default.
- W4229081768 isRetracted "false" @default.
- W4229081768 workType "article" @default.