Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229332018> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4229332018 endingPage "1504" @default.
- W4229332018 startingPage "1504" @default.
- W4229332018 abstract "Among the smart factory studies, we describe defect detection research conducted on bearings, which are elements of mechanical facilities. Bearing research has been consistently conducted in the past; however, most of the research has been limited to using existing artificial intelligence models. In addition, previous studies assumed the factories situated in the bearing defect research were insufficient. Therefore, a recent research was conducted that applied an artificial intelligence model and the factory environment. The transformer model was selected as state-of-the-art (SOTA) and was also applied to bearing research. Then, an experiment was conducted with Gaussian noise applied to assume a factory situation. The swish-LSTM transformer (Sl transformer) framework was constructed by redesigning the internal structure of the transformer using the swish activation function and long short-term memory (LSTM). Then, the data in noise were removed and reconstructed using the singular spectrum analysis (SSA) preprocessing method. Based on the SSA-Sl transformer framework, an experiment was performed by adding Gaussian noise to the Case Western Reserve University (CWRU) dataset. In the case of no noise, the Sl transformer showed more than 95% performance, and when noise was inserted, the SSA-Sl transformer showed better performance than the comparative artificial intelligence models." @default.
- W4229332018 created "2022-05-09" @default.
- W4229332018 creator A5014145146 @default.
- W4229332018 creator A5031383405 @default.
- W4229332018 date "2022-05-07" @default.
- W4229332018 modified "2023-09-26" @default.
- W4229332018 title "SSA-SL Transformer for Bearing Fault Diagnosis under Noisy Factory Environments" @default.
- W4229332018 cites W1689711448 @default.
- W4229332018 cites W2102750019 @default.
- W4229332018 cites W2144717556 @default.
- W4229332018 cites W2513828693 @default.
- W4229332018 cites W2603304445 @default.
- W4229332018 cites W2744790985 @default.
- W4229332018 cites W2754051771 @default.
- W4229332018 cites W2783323081 @default.
- W4229332018 cites W2801396593 @default.
- W4229332018 cites W2803768804 @default.
- W4229332018 cites W2804879845 @default.
- W4229332018 cites W2898760173 @default.
- W4229332018 cites W2914345141 @default.
- W4229332018 cites W2987040097 @default.
- W4229332018 cites W3000125554 @default.
- W4229332018 cites W3001026088 @default.
- W4229332018 cites W3002842489 @default.
- W4229332018 cites W3013120195 @default.
- W4229332018 cites W3014257064 @default.
- W4229332018 cites W3021264318 @default.
- W4229332018 cites W3022604663 @default.
- W4229332018 cites W3023479687 @default.
- W4229332018 cites W3034245263 @default.
- W4229332018 cites W3045503925 @default.
- W4229332018 cites W3045546070 @default.
- W4229332018 cites W3094346685 @default.
- W4229332018 cites W3109763490 @default.
- W4229332018 cites W3125650116 @default.
- W4229332018 cites W3126242280 @default.
- W4229332018 cites W3131785880 @default.
- W4229332018 cites W3155982367 @default.
- W4229332018 cites W3156696558 @default.
- W4229332018 cites W3158713091 @default.
- W4229332018 cites W3198818149 @default.
- W4229332018 cites W4205816981 @default.
- W4229332018 cites W4210741351 @default.
- W4229332018 doi "https://doi.org/10.3390/electronics11091504" @default.
- W4229332018 hasPublicationYear "2022" @default.
- W4229332018 type Work @default.
- W4229332018 citedByCount "2" @default.
- W4229332018 countsByYear W42293320182022 @default.
- W4229332018 countsByYear W42293320182023 @default.
- W4229332018 crossrefType "journal-article" @default.
- W4229332018 hasAuthorship W4229332018A5014145146 @default.
- W4229332018 hasAuthorship W4229332018A5031383405 @default.
- W4229332018 hasBestOaLocation W42293320181 @default.
- W4229332018 hasConcept C119599485 @default.
- W4229332018 hasConcept C119857082 @default.
- W4229332018 hasConcept C127413603 @default.
- W4229332018 hasConcept C153180895 @default.
- W4229332018 hasConcept C154945302 @default.
- W4229332018 hasConcept C165801399 @default.
- W4229332018 hasConcept C34736171 @default.
- W4229332018 hasConcept C41008148 @default.
- W4229332018 hasConcept C66322947 @default.
- W4229332018 hasConceptScore W4229332018C119599485 @default.
- W4229332018 hasConceptScore W4229332018C119857082 @default.
- W4229332018 hasConceptScore W4229332018C127413603 @default.
- W4229332018 hasConceptScore W4229332018C153180895 @default.
- W4229332018 hasConceptScore W4229332018C154945302 @default.
- W4229332018 hasConceptScore W4229332018C165801399 @default.
- W4229332018 hasConceptScore W4229332018C34736171 @default.
- W4229332018 hasConceptScore W4229332018C41008148 @default.
- W4229332018 hasConceptScore W4229332018C66322947 @default.
- W4229332018 hasFunder F4320322120 @default.
- W4229332018 hasIssue "9" @default.
- W4229332018 hasLocation W42293320181 @default.
- W4229332018 hasOpenAccess W4229332018 @default.
- W4229332018 hasPrimaryLocation W42293320181 @default.
- W4229332018 hasRelatedWork W2043754618 @default.
- W4229332018 hasRelatedWork W2066259560 @default.
- W4229332018 hasRelatedWork W2126100045 @default.
- W4229332018 hasRelatedWork W2262783296 @default.
- W4229332018 hasRelatedWork W2380927352 @default.
- W4229332018 hasRelatedWork W2391959412 @default.
- W4229332018 hasRelatedWork W2899084033 @default.
- W4229332018 hasRelatedWork W2961085424 @default.
- W4229332018 hasRelatedWork W4211209597 @default.
- W4229332018 hasRelatedWork W4327796109 @default.
- W4229332018 hasVolume "11" @default.
- W4229332018 isParatext "false" @default.
- W4229332018 isRetracted "false" @default.
- W4229332018 workType "article" @default.