Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229333809> ?p ?o ?g. }
- W4229333809 endingPage "104084" @default.
- W4229333809 startingPage "104084" @default.
- W4229333809 abstract "Analysis of longitudinal Electronic Health Record (EHR) data is an important goal for precision medicine. Difficulty in applying Machine Learning (ML) methods, either predictive or unsupervised, stems in part from the heterogeneity and irregular sampling of EHR data. We present an unsupervised probabilistic model that captures nonlinear relationships between variables over continuous-time. This method works with arbitrary sampling patterns and captures the joint probability distribution between variable measurements and the time intervals between them. Inference algorithms are derived that can be used to evaluate the likelihood of future using under a trained model. As an example, we consider data from the United States Veterans Health Administration (VHA) in the areas of diabetes and depression. Likelihood ratio maps are produced showing the likelihood of risk for moderate-severe vs minimal depression as measured by the Patient Health Questionnaire-9 (PHQ-9)." @default.
- W4229333809 created "2022-05-09" @default.
- W4229333809 creator A5019981495 @default.
- W4229333809 creator A5047461991 @default.
- W4229333809 creator A5053432734 @default.
- W4229333809 creator A5067161403 @default.
- W4229333809 creator A5073138616 @default.
- W4229333809 creator A5079397398 @default.
- W4229333809 date "2022-06-01" @default.
- W4229333809 modified "2023-09-25" @default.
- W4229333809 title "Continuous-time probabilistic models for longitudinal electronic health records" @default.
- W4229333809 cites W1494192115 @default.
- W4229333809 cites W1547859334 @default.
- W4229333809 cites W1902526473 @default.
- W4229333809 cites W1985690171 @default.
- W4229333809 cites W2012451988 @default.
- W4229333809 cites W2121412563 @default.
- W4229333809 cites W2127286281 @default.
- W4229333809 cites W2141115552 @default.
- W4229333809 cites W2163853180 @default.
- W4229333809 cites W2345744153 @default.
- W4229333809 cites W2625625371 @default.
- W4229333809 cites W2750557731 @default.
- W4229333809 cites W2774594041 @default.
- W4229333809 cites W2784168210 @default.
- W4229333809 cites W2801264239 @default.
- W4229333809 cites W2808379857 @default.
- W4229333809 cites W2888597733 @default.
- W4229333809 cites W2901424910 @default.
- W4229333809 cites W2919256513 @default.
- W4229333809 cites W2963940811 @default.
- W4229333809 cites W2971130507 @default.
- W4229333809 cites W3010369769 @default.
- W4229333809 cites W3045837041 @default.
- W4229333809 cites W3109426378 @default.
- W4229333809 cites W4248112284 @default.
- W4229333809 doi "https://doi.org/10.1016/j.jbi.2022.104084" @default.
- W4229333809 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35533991" @default.
- W4229333809 hasPublicationYear "2022" @default.
- W4229333809 type Work @default.
- W4229333809 citedByCount "0" @default.
- W4229333809 crossrefType "journal-article" @default.
- W4229333809 hasAuthorship W4229333809A5019981495 @default.
- W4229333809 hasAuthorship W4229333809A5047461991 @default.
- W4229333809 hasAuthorship W4229333809A5053432734 @default.
- W4229333809 hasAuthorship W4229333809A5067161403 @default.
- W4229333809 hasAuthorship W4229333809A5073138616 @default.
- W4229333809 hasAuthorship W4229333809A5079397398 @default.
- W4229333809 hasBestOaLocation W42293338091 @default.
- W4229333809 hasConcept C105795698 @default.
- W4229333809 hasConcept C106131492 @default.
- W4229333809 hasConcept C119857082 @default.
- W4229333809 hasConcept C124101348 @default.
- W4229333809 hasConcept C140779682 @default.
- W4229333809 hasConcept C154945302 @default.
- W4229333809 hasConcept C160735492 @default.
- W4229333809 hasConcept C162324750 @default.
- W4229333809 hasConcept C18653775 @default.
- W4229333809 hasConcept C2776214188 @default.
- W4229333809 hasConcept C3019952477 @default.
- W4229333809 hasConcept C31972630 @default.
- W4229333809 hasConcept C33923547 @default.
- W4229333809 hasConcept C41008148 @default.
- W4229333809 hasConcept C49937458 @default.
- W4229333809 hasConcept C50522688 @default.
- W4229333809 hasConceptScore W4229333809C105795698 @default.
- W4229333809 hasConceptScore W4229333809C106131492 @default.
- W4229333809 hasConceptScore W4229333809C119857082 @default.
- W4229333809 hasConceptScore W4229333809C124101348 @default.
- W4229333809 hasConceptScore W4229333809C140779682 @default.
- W4229333809 hasConceptScore W4229333809C154945302 @default.
- W4229333809 hasConceptScore W4229333809C160735492 @default.
- W4229333809 hasConceptScore W4229333809C162324750 @default.
- W4229333809 hasConceptScore W4229333809C18653775 @default.
- W4229333809 hasConceptScore W4229333809C2776214188 @default.
- W4229333809 hasConceptScore W4229333809C3019952477 @default.
- W4229333809 hasConceptScore W4229333809C31972630 @default.
- W4229333809 hasConceptScore W4229333809C33923547 @default.
- W4229333809 hasConceptScore W4229333809C41008148 @default.
- W4229333809 hasConceptScore W4229333809C49937458 @default.
- W4229333809 hasConceptScore W4229333809C50522688 @default.
- W4229333809 hasLocation W42293338091 @default.
- W4229333809 hasLocation W42293338092 @default.
- W4229333809 hasLocation W42293338093 @default.
- W4229333809 hasLocation W42293338094 @default.
- W4229333809 hasOpenAccess W4229333809 @default.
- W4229333809 hasPrimaryLocation W42293338091 @default.
- W4229333809 hasRelatedWork W2961085424 @default.
- W4229333809 hasRelatedWork W2963058055 @default.
- W4229333809 hasRelatedWork W3046775127 @default.
- W4229333809 hasRelatedWork W3170094116 @default.
- W4229333809 hasRelatedWork W4285260836 @default.
- W4229333809 hasRelatedWork W4286629047 @default.
- W4229333809 hasRelatedWork W4290792893 @default.
- W4229333809 hasRelatedWork W4306321456 @default.
- W4229333809 hasRelatedWork W4306674287 @default.
- W4229333809 hasRelatedWork W4224009465 @default.
- W4229333809 hasVolume "130" @default.