Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229333837> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4229333837 endingPage "43" @default.
- W4229333837 startingPage "37" @default.
- W4229333837 abstract "Chronic Kidney Disease is one of the most critical illnesses nowadays and proper diagnosis is required as soon as possible. Machine learning technique has become reliable for medical treatment. With the help of a machine learning classifier algorithms, the doctor can detect the disease on time. For this perspective, Chronic Kidney Disease prediction has been discussed in this article. Chronic Kidney Disease dataset has been taken from the UCI repository. Seven classifier algorithms have been applied in this research such as artificial neural network, C5.0, Chi-square Automatic interaction detector, logistic regression, linear support vector machine with penalty L1 & with penalty L2 and random tree. The important feature selection technique was also applied to the dataset. For each classifier, the results have been computed based on the following factors given below: (i) full features, (ii) correlation-based feature selection, (iii) Wrapper method feature selection, (iv)Least absolute shrinkage and selection operator regression, (v) synthetic minority over- sampling technique with least absolute shrinkage and selection operator regression selected features, (vi) synthetic minority oversampling technique with full features. From the results, it is marked that LSVM with penalty L2 is giving the highest accuracy of 98.86% in synthetic minority over-sampling technique with full features. Along with accuracy, precision, recall, F- measure, area under the curve and GINI coefficient have been computed and compared results of various algorithms have been shown in the graph. Least absolute shrinkage and selection operator regression selected features with synthetic minority over-sampling technique gave the best after synthetic minority over-sampling technique with full features. In the synthetic minority over-sampling technique with least absolute shrinkage and selection operator selected features, again linear support vector machine gave the highest accuracy of 98.46%. Along with machine learning models one deep neural network has been applied on the same dataset and it has been noted that deep neural network achieved the highest accuracy of 99.6%." @default.
- W4229333837 created "2022-05-09" @default.
- W4229333837 creator A5003046947 @default.
- W4229333837 creator A5023442298 @default.
- W4229333837 creator A5051833787 @default.
- W4229333837 creator A5087494186 @default.
- W4229333837 date "2022-03-05" @default.
- W4229333837 modified "2023-09-26" @default.
- W4229333837 title "Prediction of Chronic Kidney Disease-A Machine Learning Perspective" @default.
- W4229333837 cites W2982215737 @default.
- W4229333837 cites W2984445489 @default.
- W4229333837 cites W2997177758 @default.
- W4229333837 cites W3021382697 @default.
- W4229333837 cites W3021399285 @default.
- W4229333837 cites W3024496522 @default.
- W4229333837 doi "https://doi.org/10.32628/ijsrset22924" @default.
- W4229333837 hasPublicationYear "2022" @default.
- W4229333837 type Work @default.
- W4229333837 citedByCount "0" @default.
- W4229333837 crossrefType "journal-article" @default.
- W4229333837 hasAuthorship W4229333837A5003046947 @default.
- W4229333837 hasAuthorship W4229333837A5023442298 @default.
- W4229333837 hasAuthorship W4229333837A5051833787 @default.
- W4229333837 hasAuthorship W4229333837A5087494186 @default.
- W4229333837 hasBestOaLocation W42293338371 @default.
- W4229333837 hasConcept C105795698 @default.
- W4229333837 hasConcept C119857082 @default.
- W4229333837 hasConcept C12267149 @default.
- W4229333837 hasConcept C148483581 @default.
- W4229333837 hasConcept C151956035 @default.
- W4229333837 hasConcept C153180895 @default.
- W4229333837 hasConcept C154945302 @default.
- W4229333837 hasConcept C169258074 @default.
- W4229333837 hasConcept C197323446 @default.
- W4229333837 hasConcept C2776257435 @default.
- W4229333837 hasConcept C31258907 @default.
- W4229333837 hasConcept C33923547 @default.
- W4229333837 hasConcept C41008148 @default.
- W4229333837 hasConcept C83546350 @default.
- W4229333837 hasConcept C95623464 @default.
- W4229333837 hasConceptScore W4229333837C105795698 @default.
- W4229333837 hasConceptScore W4229333837C119857082 @default.
- W4229333837 hasConceptScore W4229333837C12267149 @default.
- W4229333837 hasConceptScore W4229333837C148483581 @default.
- W4229333837 hasConceptScore W4229333837C151956035 @default.
- W4229333837 hasConceptScore W4229333837C153180895 @default.
- W4229333837 hasConceptScore W4229333837C154945302 @default.
- W4229333837 hasConceptScore W4229333837C169258074 @default.
- W4229333837 hasConceptScore W4229333837C197323446 @default.
- W4229333837 hasConceptScore W4229333837C2776257435 @default.
- W4229333837 hasConceptScore W4229333837C31258907 @default.
- W4229333837 hasConceptScore W4229333837C33923547 @default.
- W4229333837 hasConceptScore W4229333837C41008148 @default.
- W4229333837 hasConceptScore W4229333837C83546350 @default.
- W4229333837 hasConceptScore W4229333837C95623464 @default.
- W4229333837 hasLocation W42293338371 @default.
- W4229333837 hasOpenAccess W4229333837 @default.
- W4229333837 hasPrimaryLocation W42293338371 @default.
- W4229333837 hasRelatedWork W2985924212 @default.
- W4229333837 hasRelatedWork W3034132578 @default.
- W4229333837 hasRelatedWork W3195168932 @default.
- W4229333837 hasRelatedWork W4288767684 @default.
- W4229333837 hasRelatedWork W4292869357 @default.
- W4229333837 hasRelatedWork W4293525103 @default.
- W4229333837 hasRelatedWork W4321636153 @default.
- W4229333837 hasRelatedWork W4327511089 @default.
- W4229333837 hasRelatedWork W4383535405 @default.
- W4229333837 hasRelatedWork W2345184372 @default.
- W4229333837 isParatext "false" @default.
- W4229333837 isRetracted "false" @default.
- W4229333837 workType "article" @default.