Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229334887> ?p ?o ?g. }
- W4229334887 endingPage "406" @default.
- W4229334887 startingPage "390" @default.
- W4229334887 abstract "Research on dendrites has been conducted for decades, providing valuable information for the development of dendritic computation. Creating an ideal neuron model is crucial for computer science and may also provide robust guidance for understanding our brain’s underlying mechanisms and principles. This paper aims to review the related studies regarding a newly emerging, non-spiking and biologically inspired model, the dendritic neuron model (DNM). By mimicking the biological phenomena of neurons in vivo, the DNM incorporates a neural pruning scheme to eliminate superfluous synapses and dendrites, simplifying its architecture and forming unique neuron morphology for a specific task. Furthermore, the simplified structure can be transformed into logic circuits consisting of the comparators and logic AND, OR and NOT gates, without sacrificing model accuracy. The rapidity of binary operations in hardware implementation gives the DNM a distinct advantage to handle high-speed data streams. The advent of the big data era has led to an exponential explosion in the amount and variety of available information. The appealing properties of the DNM lead us to believe that it is worthy of more attention and that it might be a promising data mining technique. This article presents an in-depth analysis of the pruning and transformation mechanisms and a comprehensive review of the learning algorithms and real-world applications of the DNM. It also presents an empirical comparison of the optimization performance of different algorithms. Finally, we outline some critical issues and future works of the DNM. All the source code of DNM is available at http://www.dnm.net.cn/." @default.
- W4229334887 created "2022-05-09" @default.
- W4229334887 creator A5029351601 @default.
- W4229334887 creator A5042276100 @default.
- W4229334887 creator A5046906366 @default.
- W4229334887 creator A5051027971 @default.
- W4229334887 creator A5076863238 @default.
- W4229334887 date "2022-06-01" @default.
- W4229334887 modified "2023-10-14" @default.
- W4229334887 title "A survey on dendritic neuron model: Mechanisms, algorithms and practical applications" @default.
- W4229334887 cites W1193242870 @default.
- W4229334887 cites W1537267296 @default.
- W4229334887 cites W1559348600 @default.
- W4229334887 cites W1589243260 @default.
- W4229334887 cites W1595159159 @default.
- W4229334887 cites W1640439680 @default.
- W4229334887 cites W1792666317 @default.
- W4229334887 cites W1793067680 @default.
- W4229334887 cites W1803713235 @default.
- W4229334887 cites W1892221894 @default.
- W4229334887 cites W1921182138 @default.
- W4229334887 cites W1964891557 @default.
- W4229334887 cites W1967244041 @default.
- W4229334887 cites W1967324141 @default.
- W4229334887 cites W1968503008 @default.
- W4229334887 cites W1972925007 @default.
- W4229334887 cites W1976744965 @default.
- W4229334887 cites W1977632372 @default.
- W4229334887 cites W1978234976 @default.
- W4229334887 cites W1982828652 @default.
- W4229334887 cites W1985940938 @default.
- W4229334887 cites W1986880040 @default.
- W4229334887 cites W1988606680 @default.
- W4229334887 cites W1990771923 @default.
- W4229334887 cites W1993344933 @default.
- W4229334887 cites W1995341919 @default.
- W4229334887 cites W1995668158 @default.
- W4229334887 cites W1995972800 @default.
- W4229334887 cites W1997188340 @default.
- W4229334887 cites W1999077811 @default.
- W4229334887 cites W2001946563 @default.
- W4229334887 cites W2003961265 @default.
- W4229334887 cites W2005424446 @default.
- W4229334887 cites W2005957699 @default.
- W4229334887 cites W2007141058 @default.
- W4229334887 cites W2008541784 @default.
- W4229334887 cites W2009375605 @default.
- W4229334887 cites W2012333217 @default.
- W4229334887 cites W2017115408 @default.
- W4229334887 cites W2017137821 @default.
- W4229334887 cites W2020134397 @default.
- W4229334887 cites W2020320008 @default.
- W4229334887 cites W2032067711 @default.
- W4229334887 cites W2040319898 @default.
- W4229334887 cites W2051245587 @default.
- W4229334887 cites W2057841956 @default.
- W4229334887 cites W2058523721 @default.
- W4229334887 cites W2061554433 @default.
- W4229334887 cites W2066439481 @default.
- W4229334887 cites W2067878879 @default.
- W4229334887 cites W2072955302 @default.
- W4229334887 cites W2080075452 @default.
- W4229334887 cites W2085300055 @default.
- W4229334887 cites W2085957678 @default.
- W4229334887 cites W2088249484 @default.
- W4229334887 cites W2088955805 @default.
- W4229334887 cites W2090123586 @default.
- W4229334887 cites W2090305457 @default.
- W4229334887 cites W2093953062 @default.
- W4229334887 cites W2096166399 @default.
- W4229334887 cites W2098907614 @default.
- W4229334887 cites W2100728233 @default.
- W4229334887 cites W2103972037 @default.
- W4229334887 cites W2108148142 @default.
- W4229334887 cites W2108704825 @default.
- W4229334887 cites W2110175536 @default.
- W4229334887 cites W2111701494 @default.
- W4229334887 cites W2112299196 @default.
- W4229334887 cites W2114440072 @default.
- W4229334887 cites W2116531552 @default.
- W4229334887 cites W2117440848 @default.
- W4229334887 cites W2125000529 @default.
- W4229334887 cites W2126105956 @default.
- W4229334887 cites W2128949090 @default.
- W4229334887 cites W2131302168 @default.
- W4229334887 cites W2135743357 @default.
- W4229334887 cites W2144205676 @default.
- W4229334887 cites W2146439308 @default.
- W4229334887 cites W2150447451 @default.
- W4229334887 cites W2150474797 @default.
- W4229334887 cites W2151554678 @default.
- W4229334887 cites W2154877487 @default.
- W4229334887 cites W2154943049 @default.
- W4229334887 cites W2155529731 @default.
- W4229334887 cites W2156194072 @default.
- W4229334887 cites W2159659012 @default.
- W4229334887 cites W2164653071 @default.
- W4229334887 cites W2164910793 @default.