Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229335013> ?p ?o ?g. }
- W4229335013 endingPage "1507" @default.
- W4229335013 startingPage "1507" @default.
- W4229335013 abstract "Sepsis is a highly lethal syndrome with heterogeneous clinical manifestation that can be hard to identify and treat. Early diagnosis and appropriate treatment are critical to reduce mortality and promote survival in suspected cases and improve the outcomes. Several screening prediction systems have been proposed for evaluating the early detection of patient deterioration, but the efficacy is still limited at individual level. The increasing amount and the versatility of healthcare data suggest implementing machine learning techniques to develop models for predicting sepsis. This work presents an experimental study of some machine-learning-based models for sepsis prediction considering vital signs, laboratory test results, and demographics using Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4), a publicly available dataset. The experimental results demonstrate an overall higher performance of machine learning models over the commonly used Sequential Organ Failure Assessment (SOFA) and Quick SOFA (qSOFA) scoring systems at the time of sepsis onset." @default.
- W4229335013 created "2022-05-09" @default.
- W4229335013 creator A5023819717 @default.
- W4229335013 creator A5029789557 @default.
- W4229335013 creator A5037834513 @default.
- W4229335013 creator A5072282430 @default.
- W4229335013 date "2022-05-07" @default.
- W4229335013 modified "2023-10-01" @default.
- W4229335013 title "Machine Learning Models for Early Prediction of Sepsis on Large Healthcare Datasets" @default.
- W4229335013 cites W1488990065 @default.
- W4229335013 cites W1500895378 @default.
- W4229335013 cites W1768679997 @default.
- W4229335013 cites W1898928487 @default.
- W4229335013 cites W1921056797 @default.
- W4229335013 cites W1976364950 @default.
- W4229335013 cites W1988790447 @default.
- W4229335013 cites W2041461587 @default.
- W4229335013 cites W2072615238 @default.
- W4229335013 cites W2076277682 @default.
- W4229335013 cites W2090299715 @default.
- W4229335013 cites W2099454382 @default.
- W4229335013 cites W2119387367 @default.
- W4229335013 cites W2132400950 @default.
- W4229335013 cites W2154053567 @default.
- W4229335013 cites W2165578859 @default.
- W4229335013 cites W2282181907 @default.
- W4229335013 cites W2372800617 @default.
- W4229335013 cites W2396881363 @default.
- W4229335013 cites W2474751315 @default.
- W4229335013 cites W2523834880 @default.
- W4229335013 cites W2524000875 @default.
- W4229335013 cites W2553610958 @default.
- W4229335013 cites W2581766282 @default.
- W4229335013 cites W2587546791 @default.
- W4229335013 cites W2724317418 @default.
- W4229335013 cites W2741016737 @default.
- W4229335013 cites W2748885884 @default.
- W4229335013 cites W2750557731 @default.
- W4229335013 cites W2757504960 @default.
- W4229335013 cites W2767044669 @default.
- W4229335013 cites W2776803885 @default.
- W4229335013 cites W2782117851 @default.
- W4229335013 cites W2786635213 @default.
- W4229335013 cites W2801360758 @default.
- W4229335013 cites W2801966202 @default.
- W4229335013 cites W2805356088 @default.
- W4229335013 cites W2809709076 @default.
- W4229335013 cites W28412257 @default.
- W4229335013 cites W2883566781 @default.
- W4229335013 cites W2886200927 @default.
- W4229335013 cites W2903606170 @default.
- W4229335013 cites W2905123315 @default.
- W4229335013 cites W2905983446 @default.
- W4229335013 cites W2907638671 @default.
- W4229335013 cites W2910910290 @default.
- W4229335013 cites W2911964244 @default.
- W4229335013 cites W2922803436 @default.
- W4229335013 cites W2934399013 @default.
- W4229335013 cites W2940553617 @default.
- W4229335013 cites W2944988359 @default.
- W4229335013 cites W2945543078 @default.
- W4229335013 cites W2951501478 @default.
- W4229335013 cites W2965743638 @default.
- W4229335013 cites W2969225972 @default.
- W4229335013 cites W2972915925 @default.
- W4229335013 cites W2979475731 @default.
- W4229335013 cites W2980177178 @default.
- W4229335013 cites W2985990714 @default.
- W4229335013 cites W2992764683 @default.
- W4229335013 cites W2997681568 @default.
- W4229335013 cites W2998853022 @default.
- W4229335013 cites W2999615587 @default.
- W4229335013 cites W3005797804 @default.
- W4229335013 cites W3013577764 @default.
- W4229335013 cites W3030723078 @default.
- W4229335013 cites W3035159959 @default.
- W4229335013 cites W3044866880 @default.
- W4229335013 cites W3048688409 @default.
- W4229335013 cites W3131712583 @default.
- W4229335013 cites W3133562261 @default.
- W4229335013 cites W3171007518 @default.
- W4229335013 cites W3215673745 @default.
- W4229335013 cites W4247943214 @default.
- W4229335013 cites W4293242440 @default.
- W4229335013 cites W3181946933 @default.
- W4229335013 doi "https://doi.org/10.3390/electronics11091507" @default.
- W4229335013 hasPublicationYear "2022" @default.
- W4229335013 type Work @default.
- W4229335013 citedByCount "3" @default.
- W4229335013 countsByYear W42293350132023 @default.
- W4229335013 crossrefType "journal-article" @default.
- W4229335013 hasAuthorship W4229335013A5023819717 @default.
- W4229335013 hasAuthorship W4229335013A5029789557 @default.
- W4229335013 hasAuthorship W4229335013A5037834513 @default.
- W4229335013 hasAuthorship W4229335013A5072282430 @default.
- W4229335013 hasBestOaLocation W42293350131 @default.
- W4229335013 hasConcept C119857082 @default.
- W4229335013 hasConcept C126322002 @default.