Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229335392> ?p ?o ?g. }
- W4229335392 endingPage "1133" @default.
- W4229335392 startingPage "1133" @default.
- W4229335392 abstract "Progressive climate changes are the most important challenges for modern agriculture. Permanent grassland represents around 70% of all agricultural land. In comparison with other agroecosystems, grasslands are more sensitive to climate change. The aim of this study was to create deterministic models based on artificial neural networks to identify highly significant factors influencing the yield and digestibility of grassland sward in the climatic conditions of central Poland. The models were based on data from a grassland experiment conducted between 2014 and 2016. Phytophenological data (harvest date and botanical composition of sward) and meteorological data (average temperatures, total rainfall, and total effective temperatures) were used as independent variables, whereas qualitative and quantitative parameters of the feed made from the grassland sward (dry matter digestibility, dry matter yield, and protein yield) were used as dependent variables. Nine deterministic models were proposed Y_G, DIG_G, P_G, Y_GB, DIG_GB, P_GB, Y_GC, DIG_GC, and P_GC, which differed in the input variable and the main factor from the grassland experiment. The analysis of the sensitivity of the neural networks in the models enabled the identification of the independent variables with the greatest influence on the yield of dry matter and protein as well as the digestibility of the dry matter of the first regrowth of grassland sward, taking its diverse botanical composition into account. The results showed that the following factors were the most significant (rank 1): the average daily air temperature, total rainfall, and the percentage of legume plants. This research will be continued on a larger group of factors influencing the output variables and it will involve an attempt to optimise these factors." @default.
- W4229335392 created "2022-05-09" @default.
- W4229335392 creator A5005271214 @default.
- W4229335392 creator A5005843348 @default.
- W4229335392 creator A5006946437 @default.
- W4229335392 creator A5028715316 @default.
- W4229335392 creator A5072066047 @default.
- W4229335392 creator A5073016623 @default.
- W4229335392 creator A5076706069 @default.
- W4229335392 date "2022-05-08" @default.
- W4229335392 modified "2023-10-17" @default.
- W4229335392 title "Application of Artificial Neural Networks Sensitivity Analysis for the Pre-Identification of Highly Significant Factors Influencing the Yield and Digestibility of Grassland Sward in the Climatic Conditions of Central Poland" @default.
- W4229335392 cites W1486797116 @default.
- W4229335392 cites W1964656653 @default.
- W4229335392 cites W1965965933 @default.
- W4229335392 cites W1972420894 @default.
- W4229335392 cites W1979245706 @default.
- W4229335392 cites W1980632568 @default.
- W4229335392 cites W1981797584 @default.
- W4229335392 cites W1984457886 @default.
- W4229335392 cites W1990359011 @default.
- W4229335392 cites W1996613904 @default.
- W4229335392 cites W2002287831 @default.
- W4229335392 cites W2014920611 @default.
- W4229335392 cites W2023338732 @default.
- W4229335392 cites W2029237429 @default.
- W4229335392 cites W2032457295 @default.
- W4229335392 cites W2036123899 @default.
- W4229335392 cites W2042111982 @default.
- W4229335392 cites W2043471252 @default.
- W4229335392 cites W2043663410 @default.
- W4229335392 cites W2054187029 @default.
- W4229335392 cites W2054964649 @default.
- W4229335392 cites W2056722600 @default.
- W4229335392 cites W2065828724 @default.
- W4229335392 cites W2074163178 @default.
- W4229335392 cites W2074898051 @default.
- W4229335392 cites W2088241086 @default.
- W4229335392 cites W2091581957 @default.
- W4229335392 cites W2097775683 @default.
- W4229335392 cites W2108938929 @default.
- W4229335392 cites W2116409775 @default.
- W4229335392 cites W2117506385 @default.
- W4229335392 cites W2121394390 @default.
- W4229335392 cites W2124976023 @default.
- W4229335392 cites W2137888140 @default.
- W4229335392 cites W2149168164 @default.
- W4229335392 cites W2152803686 @default.
- W4229335392 cites W2155899276 @default.
- W4229335392 cites W2159345352 @default.
- W4229335392 cites W2165301409 @default.
- W4229335392 cites W2165661105 @default.
- W4229335392 cites W2222241884 @default.
- W4229335392 cites W2261272073 @default.
- W4229335392 cites W2272662374 @default.
- W4229335392 cites W2318279673 @default.
- W4229335392 cites W2407118584 @default.
- W4229335392 cites W2485125993 @default.
- W4229335392 cites W2489770917 @default.
- W4229335392 cites W2496800425 @default.
- W4229335392 cites W2515113124 @default.
- W4229335392 cites W2518522012 @default.
- W4229335392 cites W2767189848 @default.
- W4229335392 cites W2793350103 @default.
- W4229335392 cites W2802205947 @default.
- W4229335392 cites W2803628821 @default.
- W4229335392 cites W2805798665 @default.
- W4229335392 cites W2907795208 @default.
- W4229335392 cites W2909125467 @default.
- W4229335392 cites W2914169501 @default.
- W4229335392 cites W2915997351 @default.
- W4229335392 cites W2916675706 @default.
- W4229335392 cites W2920138370 @default.
- W4229335392 cites W2927413391 @default.
- W4229335392 cites W2934709831 @default.
- W4229335392 cites W2940502149 @default.
- W4229335392 cites W2953351353 @default.
- W4229335392 cites W2976697151 @default.
- W4229335392 cites W2990219572 @default.
- W4229335392 cites W3006233966 @default.
- W4229335392 cites W3012292080 @default.
- W4229335392 cites W3024764818 @default.
- W4229335392 cites W3093309943 @default.
- W4229335392 cites W3103938985 @default.
- W4229335392 cites W3159743384 @default.
- W4229335392 cites W3165571939 @default.
- W4229335392 cites W3168812786 @default.
- W4229335392 cites W3197731836 @default.
- W4229335392 cites W417569826 @default.
- W4229335392 cites W4233235025 @default.
- W4229335392 cites W4253058909 @default.
- W4229335392 doi "https://doi.org/10.3390/agronomy12051133" @default.
- W4229335392 hasPublicationYear "2022" @default.
- W4229335392 type Work @default.
- W4229335392 citedByCount "8" @default.
- W4229335392 countsByYear W42293353922022 @default.
- W4229335392 countsByYear W42293353922023 @default.
- W4229335392 crossrefType "journal-article" @default.