Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229336522> ?p ?o ?g. }
- W4229336522 endingPage "102471" @default.
- W4229336522 startingPage "102471" @default.
- W4229336522 abstract "Resting-state functional magnetic resonance imaging (rs-fMRI) has been successfully employed to understand the organisation of the human brain. Typically, the brain is parcellated into regions of interest (ROIs) and modelled as a graph where each ROI represents a node and association measures between ROI-specific blood-oxygen-level-dependent (BOLD) time series are edges. Recently, graph neural networks (GNNs) have seen a surge in popularity due to their success in modelling unstructured relational data. The latest developments with GNNs, however, have not yet been fully exploited for the analysis of rs-fMRI data, particularly with regards to its spatio-temporal dynamics. In this paper, we present a novel deep neural network architecture which combines both GNNs and temporal convolutional networks (TCNs) in order to learn from both the spatial and temporal components of rs-fMRI data in an end-to-end fashion. In particular, this corresponds to intra-feature learning (i.e., learning temporal dynamics with TCNs) as well as inter-feature learning (i.e., leveraging interactions between ROI-wise dynamics with GNNs). We evaluate our model with an ablation study using 35,159 samples from the UK Biobank rs-fMRI database, as well as in the smaller Human Connectome Project (HCP) dataset, both in a unimodal and in a multimodal fashion. We also demonstrate that out architecture contains explainability-related features which easily map to realistic neurobiological insights. We suggest that this model could lay the groundwork for future deep learning architectures focused on leveraging the inherently and inextricably spatio-temporal nature of rs-fMRI data." @default.
- W4229336522 created "2022-05-09" @default.
- W4229336522 creator A5010629974 @default.
- W4229336522 creator A5014248595 @default.
- W4229336522 creator A5024646528 @default.
- W4229336522 creator A5026898234 @default.
- W4229336522 creator A5031935895 @default.
- W4229336522 creator A5046043659 @default.
- W4229336522 creator A5056748708 @default.
- W4229336522 date "2022-07-01" @default.
- W4229336522 modified "2023-10-14" @default.
- W4229336522 title "A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data" @default.
- W4229336522 cites W1965894642 @default.
- W4229336522 cites W1976623182 @default.
- W4229336522 cites W1983208069 @default.
- W4229336522 cites W1995138343 @default.
- W4229336522 cites W2014022174 @default.
- W4229336522 cites W2079634169 @default.
- W4229336522 cites W2101135654 @default.
- W4229336522 cites W2116533103 @default.
- W4229336522 cites W2124953625 @default.
- W4229336522 cites W2137526583 @default.
- W4229336522 cites W2157446241 @default.
- W4229336522 cites W2170702893 @default.
- W4229336522 cites W2563279629 @default.
- W4229336522 cites W2591179774 @default.
- W4229336522 cites W2732755284 @default.
- W4229336522 cites W2752558629 @default.
- W4229336522 cites W2774446342 @default.
- W4229336522 cites W2782556780 @default.
- W4229336522 cites W2795581154 @default.
- W4229336522 cites W2800082313 @default.
- W4229336522 cites W2805985513 @default.
- W4229336522 cites W2895486342 @default.
- W4229336522 cites W2899413480 @default.
- W4229336522 cites W2950680182 @default.
- W4229336522 cites W2954019805 @default.
- W4229336522 cites W2965700737 @default.
- W4229336522 cites W2970282997 @default.
- W4229336522 cites W2979717766 @default.
- W4229336522 cites W2981731882 @default.
- W4229336522 cites W2990504128 @default.
- W4229336522 cites W3003265860 @default.
- W4229336522 cites W3007766954 @default.
- W4229336522 cites W3011590044 @default.
- W4229336522 cites W3013861761 @default.
- W4229336522 cites W3019119961 @default.
- W4229336522 cites W3025623662 @default.
- W4229336522 cites W3039011740 @default.
- W4229336522 cites W3059738892 @default.
- W4229336522 cites W3089595613 @default.
- W4229336522 cites W3095738237 @default.
- W4229336522 cites W3150635270 @default.
- W4229336522 cites W371353707 @default.
- W4229336522 cites W4298960041 @default.
- W4229336522 doi "https://doi.org/10.1016/j.media.2022.102471" @default.
- W4229336522 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35580429" @default.
- W4229336522 hasPublicationYear "2022" @default.
- W4229336522 type Work @default.
- W4229336522 citedByCount "7" @default.
- W4229336522 countsByYear W42293365222022 @default.
- W4229336522 countsByYear W42293365222023 @default.
- W4229336522 crossrefType "journal-article" @default.
- W4229336522 hasAuthorship W4229336522A5010629974 @default.
- W4229336522 hasAuthorship W4229336522A5014248595 @default.
- W4229336522 hasAuthorship W4229336522A5024646528 @default.
- W4229336522 hasAuthorship W4229336522A5026898234 @default.
- W4229336522 hasAuthorship W4229336522A5031935895 @default.
- W4229336522 hasAuthorship W4229336522A5046043659 @default.
- W4229336522 hasAuthorship W4229336522A5056748708 @default.
- W4229336522 hasBestOaLocation W42293365221 @default.
- W4229336522 hasConcept C108583219 @default.
- W4229336522 hasConcept C119857082 @default.
- W4229336522 hasConcept C132525143 @default.
- W4229336522 hasConcept C153180895 @default.
- W4229336522 hasConcept C154945302 @default.
- W4229336522 hasConcept C15744967 @default.
- W4229336522 hasConcept C169760540 @default.
- W4229336522 hasConcept C2779226451 @default.
- W4229336522 hasConcept C3018011982 @default.
- W4229336522 hasConcept C41008148 @default.
- W4229336522 hasConcept C66324658 @default.
- W4229336522 hasConcept C80444323 @default.
- W4229336522 hasConcept C81363708 @default.
- W4229336522 hasConcept C97820695 @default.
- W4229336522 hasConceptScore W4229336522C108583219 @default.
- W4229336522 hasConceptScore W4229336522C119857082 @default.
- W4229336522 hasConceptScore W4229336522C132525143 @default.
- W4229336522 hasConceptScore W4229336522C153180895 @default.
- W4229336522 hasConceptScore W4229336522C154945302 @default.
- W4229336522 hasConceptScore W4229336522C15744967 @default.
- W4229336522 hasConceptScore W4229336522C169760540 @default.
- W4229336522 hasConceptScore W4229336522C2779226451 @default.
- W4229336522 hasConceptScore W4229336522C3018011982 @default.
- W4229336522 hasConceptScore W4229336522C41008148 @default.
- W4229336522 hasConceptScore W4229336522C66324658 @default.
- W4229336522 hasConceptScore W4229336522C80444323 @default.
- W4229336522 hasConceptScore W4229336522C81363708 @default.