Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229367124> ?p ?o ?g. }
- W4229367124 endingPage "2466" @default.
- W4229367124 startingPage "2451" @default.
- W4229367124 abstract "Abstract The U.S. Geological Survey (USGS) maintains an archive of 189,180 digitized scans of analog seismic records from the World-Wide Standardized Seismograph Network (WWSSN). Although these scans have been made public, the archive is too large to manually review, and few researchers have utilized large numbers of these records. To facilitate further research using this historical dataset, we develop a simple convolutional neural network (CNN) that rapidly (∼4.75 s/film chip) classifies scanned film chip images (called “chips,” because they are individually cut segments of 70 mm film) into four categories of “interestingness” to earthquake seismologists based on the presence of earthquakes and other seismic signals in the record: “no interest,” “little interest,” “interest,” and “high interest.” The CNN, dubbed “Seismic Analog Record Network” (SARNet), can identify four types of seismic traces (“no events,” “minor events,” “major events,” and “errors”) in 200 × 200 pixel subcrops with an accuracy of 92% using a confidence threshold of 85%. SARNet then converts 100 random subcrops from each film chip into the overall classification of interestingness. In this task, SARNet performed as well as expert human classifiers in determining the film chip’s overall interest grade. Applying SARNet to 34,000 film chips in the WWSSN archive found that 21% of the images were of “high interest” and had an “indeterminate” rate of only 4%. Thus, the need for the manual review of images was reduced by 79%. Sorting of film chips derived from SARNet will expedite further exploration of the archive of digitized analog seismic records stored at the USGS." @default.
- W4229367124 created "2022-05-10" @default.
- W4229367124 creator A5009517924 @default.
- W4229367124 creator A5020703206 @default.
- W4229367124 creator A5079350138 @default.
- W4229367124 creator A5086218698 @default.
- W4229367124 creator A5088930403 @default.
- W4229367124 creator A5089159031 @default.
- W4229367124 date "2022-05-09" @default.
- W4229367124 modified "2023-10-16" @default.
- W4229367124 title "Classifying Worldwide Standardized Seismograph Network Records Using a Simple Convolution Neural Network" @default.
- W4229367124 cites W12330979 @default.
- W4229367124 cites W1481542734 @default.
- W4229367124 cites W1556298538 @default.
- W4229367124 cites W168430928 @default.
- W4229367124 cites W1967137980 @default.
- W4229367124 cites W2003629485 @default.
- W4229367124 cites W2055386283 @default.
- W4229367124 cites W2062118960 @default.
- W4229367124 cites W2062221814 @default.
- W4229367124 cites W2089792340 @default.
- W4229367124 cites W2148143831 @default.
- W4229367124 cites W2163128056 @default.
- W4229367124 cites W2309232502 @default.
- W4229367124 cites W2512335937 @default.
- W4229367124 cites W2622826443 @default.
- W4229367124 cites W2751924564 @default.
- W4229367124 cites W2768121648 @default.
- W4229367124 cites W2782436336 @default.
- W4229367124 cites W2782522152 @default.
- W4229367124 cites W2791942584 @default.
- W4229367124 cites W2794284562 @default.
- W4229367124 cites W2795061970 @default.
- W4229367124 cites W2902570889 @default.
- W4229367124 cites W2907292342 @default.
- W4229367124 cites W2909082165 @default.
- W4229367124 cites W2912173779 @default.
- W4229367124 cites W2915626801 @default.
- W4229367124 cites W2940726923 @default.
- W4229367124 cites W2972574632 @default.
- W4229367124 cites W2985792007 @default.
- W4229367124 cites W2999110294 @default.
- W4229367124 cites W3007307805 @default.
- W4229367124 cites W3013056581 @default.
- W4229367124 cites W3015421779 @default.
- W4229367124 cites W3016344222 @default.
- W4229367124 cites W3045615388 @default.
- W4229367124 cites W3101294892 @default.
- W4229367124 cites W3124539583 @default.
- W4229367124 cites W4254615348 @default.
- W4229367124 cites W1991702979 @default.
- W4229367124 doi "https://doi.org/10.1785/0220220017" @default.
- W4229367124 hasPublicationYear "2022" @default.
- W4229367124 type Work @default.
- W4229367124 citedByCount "1" @default.
- W4229367124 countsByYear W42293671242022 @default.
- W4229367124 crossrefType "journal-article" @default.
- W4229367124 hasAuthorship W4229367124A5009517924 @default.
- W4229367124 hasAuthorship W4229367124A5020703206 @default.
- W4229367124 hasAuthorship W4229367124A5079350138 @default.
- W4229367124 hasAuthorship W4229367124A5086218698 @default.
- W4229367124 hasAuthorship W4229367124A5088930403 @default.
- W4229367124 hasAuthorship W4229367124A5089159031 @default.
- W4229367124 hasConcept C119217923 @default.
- W4229367124 hasConcept C127313418 @default.
- W4229367124 hasConcept C153180895 @default.
- W4229367124 hasConcept C154945302 @default.
- W4229367124 hasConcept C165005293 @default.
- W4229367124 hasConcept C165205528 @default.
- W4229367124 hasConcept C41008148 @default.
- W4229367124 hasConcept C50644808 @default.
- W4229367124 hasConcept C76155785 @default.
- W4229367124 hasConcept C81363708 @default.
- W4229367124 hasConceptScore W4229367124C119217923 @default.
- W4229367124 hasConceptScore W4229367124C127313418 @default.
- W4229367124 hasConceptScore W4229367124C153180895 @default.
- W4229367124 hasConceptScore W4229367124C154945302 @default.
- W4229367124 hasConceptScore W4229367124C165005293 @default.
- W4229367124 hasConceptScore W4229367124C165205528 @default.
- W4229367124 hasConceptScore W4229367124C41008148 @default.
- W4229367124 hasConceptScore W4229367124C50644808 @default.
- W4229367124 hasConceptScore W4229367124C76155785 @default.
- W4229367124 hasConceptScore W4229367124C81363708 @default.
- W4229367124 hasIssue "5" @default.
- W4229367124 hasLocation W42293671241 @default.
- W4229367124 hasOpenAccess W4229367124 @default.
- W4229367124 hasPrimaryLocation W42293671241 @default.
- W4229367124 hasRelatedWork W2175746458 @default.
- W4229367124 hasRelatedWork W2732542196 @default.
- W4229367124 hasRelatedWork W2738221750 @default.
- W4229367124 hasRelatedWork W2760085659 @default.
- W4229367124 hasRelatedWork W2767651786 @default.
- W4229367124 hasRelatedWork W2883200793 @default.
- W4229367124 hasRelatedWork W2912288872 @default.
- W4229367124 hasRelatedWork W2940661641 @default.
- W4229367124 hasRelatedWork W3012978760 @default.
- W4229367124 hasRelatedWork W3093612317 @default.
- W4229367124 hasVolume "93" @default.