Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229372112> ?p ?o ?g. }
Showing items 1 to 43 of
43
with 100 items per page.
- W4229372112 endingPage "1232" @default.
- W4229372112 startingPage "1222" @default.
- W4229372112 abstract "A pothole is a flaw that can be discovered on the road surface and it is one of a major contribution to the road accident. The impact of a vehicle on a potholed road is not just making the ride uncomfortable. It can damage the vehicle's suspension system as well as the wheel of the vehicle, resulting in costly repair. Therefore, a regular road maintenance activity and assessment are very important to ensure that it is safe to be used. However, due to the limited number of expensive inspection vehicles, the inspection is performed manually. In this study, we present a mobile pothole detection system, namely HOLETRACKER using VGG16, a deep learning model architecture. The built model is trained using a collection of images taken from Kaggle and Internet in a variety of settings. The experiment used 739 numbers of training images and 144 numbers of testing images. The experimental result achieved the accuracy level rate at 90%. This paper also presents the development of two versions of the HOLETRACKER system, the mobile and web application that can be used by the public users and authorities. With the HOLETRACKER system, people can make a complaint of potholes via their mobile phone at anytime and anywhere. The validation checking of the potholed and location tracking through the GPS are the two main features provided by the system that will be performed before the information reaches the authorities for immediate action. The system is a cost-effective solution as an alternative to the manual pothole inspection management in facilitating the authorities as a measure to reduce accidents caused by potholes." @default.
- W4229372112 created "2022-05-10" @default.
- W4229372112 creator A5006912030 @default.
- W4229372112 creator A5061253372 @default.
- W4229372112 date "2022-05-01" @default.
- W4229372112 modified "2023-10-14" @default.
- W4229372112 title "A Pothole Detection Using VGG16" @default.
- W4229372112 doi "https://doi.org/10.13189/cea.2022.100337" @default.
- W4229372112 hasPublicationYear "2022" @default.
- W4229372112 type Work @default.
- W4229372112 citedByCount "0" @default.
- W4229372112 crossrefType "journal-article" @default.
- W4229372112 hasAuthorship W4229372112A5006912030 @default.
- W4229372112 hasAuthorship W4229372112A5061253372 @default.
- W4229372112 hasBestOaLocation W42293721121 @default.
- W4229372112 hasConcept C127313418 @default.
- W4229372112 hasConcept C2776023743 @default.
- W4229372112 hasConcept C41008148 @default.
- W4229372112 hasConcept C5900021 @default.
- W4229372112 hasConceptScore W4229372112C127313418 @default.
- W4229372112 hasConceptScore W4229372112C2776023743 @default.
- W4229372112 hasConceptScore W4229372112C41008148 @default.
- W4229372112 hasConceptScore W4229372112C5900021 @default.
- W4229372112 hasIssue "3" @default.
- W4229372112 hasLocation W42293721121 @default.
- W4229372112 hasOpenAccess W4229372112 @default.
- W4229372112 hasPrimaryLocation W42293721121 @default.
- W4229372112 hasRelatedWork W2185993565 @default.
- W4229372112 hasRelatedWork W2383269480 @default.
- W4229372112 hasRelatedWork W2592426749 @default.
- W4229372112 hasRelatedWork W2748952813 @default.
- W4229372112 hasRelatedWork W278943861 @default.
- W4229372112 hasRelatedWork W2899084033 @default.
- W4229372112 hasRelatedWork W2960952826 @default.
- W4229372112 hasRelatedWork W3118927687 @default.
- W4229372112 hasRelatedWork W4312659957 @default.
- W4229372112 hasRelatedWork W640636360 @default.
- W4229372112 hasVolume "10" @default.
- W4229372112 isParatext "false" @default.
- W4229372112 isRetracted "false" @default.
- W4229372112 workType "article" @default.