Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229372191> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4229372191 endingPage "3534" @default.
- W4229372191 startingPage "3534" @default.
- W4229372191 abstract "Glucose monitoring technologies allow users to monitor glycemic fluctuations (e.g., blood glucose levels). This is particularly important for individuals who have diabetes mellitus (DM). Traditional self-monitoring blood glucose (SMBG) devices require the user to prick their finger and extract a blood drop to measure the blood glucose based on chemical reactions with the blood. Unlike traditional glucometer devices, noninvasive continuous glucose monitoring (NICGM) devices aim to solve these issues by consistently monitoring users’ blood glucose levels (BGLs) without invasively acquiring a sample. In this work, we investigated the feasibility of a novel approach to NICGM using multiple off-the-shelf wearable sensors and learning-based models (i.e., machine learning) to predict blood glucose. Two datasets were used for this study: (1) the OhioT1DM dataset, provided by the Ohio University; and (2) the UofM dataset, created by our research team. The UofM dataset consists of fourteen features provided by six sensors for studying possible relationships between glucose and noninvasive biometric measurements. Both datasets are passed through a machine learning (ML) pipeline that tests linear and nonlinear models to predict BGLs from the set of noninvasive features. The results of this pilot study show that the combination of fourteen noninvasive biometric measurements with ML algorithms could lead to accurate BGL predictions within the clinical range; however, a larger dataset is required to make conclusions about the feasibility of this approach." @default.
- W4229372191 created "2022-05-10" @default.
- W4229372191 creator A5027237221 @default.
- W4229372191 creator A5041933563 @default.
- W4229372191 creator A5083988830 @default.
- W4229372191 creator A5090125090 @default.
- W4229372191 date "2022-05-06" @default.
- W4229372191 modified "2023-10-18" @default.
- W4229372191 title "Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms" @default.
- W4229372191 cites W1985034572 @default.
- W4229372191 cites W1986495510 @default.
- W4229372191 cites W1995581381 @default.
- W4229372191 cites W2011301426 @default.
- W4229372191 cites W2041055650 @default.
- W4229372191 cites W2056528706 @default.
- W4229372191 cites W2068770952 @default.
- W4229372191 cites W2104139011 @default.
- W4229372191 cites W2114311742 @default.
- W4229372191 cites W2120339204 @default.
- W4229372191 cites W2124621693 @default.
- W4229372191 cites W2142164174 @default.
- W4229372191 cites W2156387998 @default.
- W4229372191 cites W2163850005 @default.
- W4229372191 cites W2342249984 @default.
- W4229372191 cites W2531804872 @default.
- W4229372191 cites W2609703666 @default.
- W4229372191 cites W2914059200 @default.
- W4229372191 cites W2964434942 @default.
- W4229372191 cites W2975219453 @default.
- W4229372191 cites W2997613820 @default.
- W4229372191 cites W3027229065 @default.
- W4229372191 cites W3032024229 @default.
- W4229372191 cites W3089652905 @default.
- W4229372191 cites W3099878876 @default.
- W4229372191 cites W3189486095 @default.
- W4229372191 cites W4212883601 @default.
- W4229372191 cites W4251411953 @default.
- W4229372191 cites W4254649489 @default.
- W4229372191 cites W4297957988 @default.
- W4229372191 doi "https://doi.org/10.3390/s22093534" @default.
- W4229372191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35591223" @default.
- W4229372191 hasPublicationYear "2022" @default.
- W4229372191 type Work @default.
- W4229372191 citedByCount "1" @default.
- W4229372191 countsByYear W42293721912023 @default.
- W4229372191 crossrefType "journal-article" @default.
- W4229372191 hasAuthorship W4229372191A5027237221 @default.
- W4229372191 hasAuthorship W4229372191A5041933563 @default.
- W4229372191 hasAuthorship W4229372191A5083988830 @default.
- W4229372191 hasAuthorship W4229372191A5090125090 @default.
- W4229372191 hasBestOaLocation W42293721911 @default.
- W4229372191 hasConcept C119857082 @default.
- W4229372191 hasConcept C134018914 @default.
- W4229372191 hasConcept C149635348 @default.
- W4229372191 hasConcept C150594956 @default.
- W4229372191 hasConcept C154945302 @default.
- W4229372191 hasConcept C199360897 @default.
- W4229372191 hasConcept C2780473172 @default.
- W4229372191 hasConcept C2908918659 @default.
- W4229372191 hasConcept C2986379492 @default.
- W4229372191 hasConcept C41008148 @default.
- W4229372191 hasConcept C43521106 @default.
- W4229372191 hasConcept C555293320 @default.
- W4229372191 hasConcept C71924100 @default.
- W4229372191 hasConceptScore W4229372191C119857082 @default.
- W4229372191 hasConceptScore W4229372191C134018914 @default.
- W4229372191 hasConceptScore W4229372191C149635348 @default.
- W4229372191 hasConceptScore W4229372191C150594956 @default.
- W4229372191 hasConceptScore W4229372191C154945302 @default.
- W4229372191 hasConceptScore W4229372191C199360897 @default.
- W4229372191 hasConceptScore W4229372191C2780473172 @default.
- W4229372191 hasConceptScore W4229372191C2908918659 @default.
- W4229372191 hasConceptScore W4229372191C2986379492 @default.
- W4229372191 hasConceptScore W4229372191C41008148 @default.
- W4229372191 hasConceptScore W4229372191C43521106 @default.
- W4229372191 hasConceptScore W4229372191C555293320 @default.
- W4229372191 hasConceptScore W4229372191C71924100 @default.
- W4229372191 hasIssue "9" @default.
- W4229372191 hasLocation W42293721911 @default.
- W4229372191 hasLocation W42293721912 @default.
- W4229372191 hasLocation W42293721913 @default.
- W4229372191 hasLocation W42293721914 @default.
- W4229372191 hasOpenAccess W4229372191 @default.
- W4229372191 hasPrimaryLocation W42293721911 @default.
- W4229372191 hasRelatedWork W2906097830 @default.
- W4229372191 hasRelatedWork W2906430688 @default.
- W4229372191 hasRelatedWork W2923327702 @default.
- W4229372191 hasRelatedWork W3108782981 @default.
- W4229372191 hasRelatedWork W3156573609 @default.
- W4229372191 hasRelatedWork W3200072857 @default.
- W4229372191 hasRelatedWork W4238545600 @default.
- W4229372191 hasRelatedWork W4312977841 @default.
- W4229372191 hasRelatedWork W4318204718 @default.
- W4229372191 hasRelatedWork W4381930651 @default.
- W4229372191 hasVolume "22" @default.
- W4229372191 isParatext "false" @default.
- W4229372191 isRetracted "false" @default.
- W4229372191 workType "article" @default.