Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229374448> ?p ?o ?g. }
- W4229374448 endingPage "997" @default.
- W4229374448 startingPage "997" @default.
- W4229374448 abstract "Cancer is a group of diseases causing abnormal cell growth, altering the genome, and invading or spreading to other parts of the body. Among therapeutic peptide drugs, anticancer peptides (ACPs) have been considered to target and kill cancer cells because cancer cells have unique characteristics such as a high negative charge and abundance of microvilli in the cell membrane when compared to a normal cell. ACPs have several advantages, such as high specificity, cost-effectiveness, low immunogenicity, minimal toxicity, and high tolerance under normal physiological conditions. However, the development and identification of ACPs are time-consuming and expensive in traditional wet-lab-based approaches. Thus, the application of artificial intelligence on the approaches can save time and reduce the cost to identify candidate ACPs. Recently, machine learning (ML), deep learning (DL), and hybrid learning (ML combined DL) have emerged into the development of ACPs without experimental analysis, owing to advances in computer power and big data from the power system. Additionally, we suggest that combination therapy with classical approaches and ACPs might be one of the impactful approaches to increase the efficiency of cancer therapy." @default.
- W4229374448 created "2022-05-10" @default.
- W4229374448 creator A5003686834 @default.
- W4229374448 creator A5051030484 @default.
- W4229374448 creator A5053387170 @default.
- W4229374448 creator A5057155466 @default.
- W4229374448 creator A5060514881 @default.
- W4229374448 creator A5065292282 @default.
- W4229374448 date "2022-05-06" @default.
- W4229374448 modified "2023-10-14" @default.
- W4229374448 title "Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics" @default.
- W4229374448 cites W114346019 @default.
- W4229374448 cites W1486747577 @default.
- W4229374448 cites W1511793991 @default.
- W4229374448 cites W1522396363 @default.
- W4229374448 cites W1523434611 @default.
- W4229374448 cites W1587050401 @default.
- W4229374448 cites W176352299 @default.
- W4229374448 cites W1806952617 @default.
- W4229374448 cites W1818070918 @default.
- W4229374448 cites W1853873243 @default.
- W4229374448 cites W1882862671 @default.
- W4229374448 cites W1931581539 @default.
- W4229374448 cites W1963510481 @default.
- W4229374448 cites W1964940342 @default.
- W4229374448 cites W1971042695 @default.
- W4229374448 cites W1977838124 @default.
- W4229374448 cites W1980870170 @default.
- W4229374448 cites W1985820931 @default.
- W4229374448 cites W1988789252 @default.
- W4229374448 cites W1990331048 @default.
- W4229374448 cites W1992450378 @default.
- W4229374448 cites W1993875393 @default.
- W4229374448 cites W1995757481 @default.
- W4229374448 cites W1999975217 @default.
- W4229374448 cites W2003472128 @default.
- W4229374448 cites W2003863728 @default.
- W4229374448 cites W2008546953 @default.
- W4229374448 cites W2010119764 @default.
- W4229374448 cites W2011628468 @default.
- W4229374448 cites W2011714769 @default.
- W4229374448 cites W2022101765 @default.
- W4229374448 cites W2025050071 @default.
- W4229374448 cites W2025344276 @default.
- W4229374448 cites W2033228549 @default.
- W4229374448 cites W2037338364 @default.
- W4229374448 cites W2037342610 @default.
- W4229374448 cites W2037900060 @default.
- W4229374448 cites W2040895929 @default.
- W4229374448 cites W2042756236 @default.
- W4229374448 cites W2043481243 @default.
- W4229374448 cites W2046835809 @default.
- W4229374448 cites W2048240839 @default.
- W4229374448 cites W2048498897 @default.
- W4229374448 cites W2049923433 @default.
- W4229374448 cites W2053707749 @default.
- W4229374448 cites W2056174640 @default.
- W4229374448 cites W2071251600 @default.
- W4229374448 cites W2074196504 @default.
- W4229374448 cites W2074873270 @default.
- W4229374448 cites W2076253721 @default.
- W4229374448 cites W2076948707 @default.
- W4229374448 cites W2076993839 @default.
- W4229374448 cites W2077799814 @default.
- W4229374448 cites W2082677806 @default.
- W4229374448 cites W2090406819 @default.
- W4229374448 cites W2097120982 @default.
- W4229374448 cites W2099153308 @default.
- W4229374448 cites W2100173894 @default.
- W4229374448 cites W2101322634 @default.
- W4229374448 cites W2102636708 @default.
- W4229374448 cites W2104285855 @default.
- W4229374448 cites W2104817695 @default.
- W4229374448 cites W2107254151 @default.
- W4229374448 cites W2108552827 @default.
- W4229374448 cites W2109968954 @default.
- W4229374448 cites W2114374730 @default.
- W4229374448 cites W2115749410 @default.
- W4229374448 cites W2117692326 @default.
- W4229374448 cites W2118911320 @default.
- W4229374448 cites W2121691257 @default.
- W4229374448 cites W2123647020 @default.
- W4229374448 cites W2124016062 @default.
- W4229374448 cites W2129860849 @default.
- W4229374448 cites W2130503287 @default.
- W4229374448 cites W2132117833 @default.
- W4229374448 cites W2133071015 @default.
- W4229374448 cites W2136007332 @default.
- W4229374448 cites W2141188346 @default.
- W4229374448 cites W2148512505 @default.
- W4229374448 cites W2151028908 @default.
- W4229374448 cites W2152522381 @default.
- W4229374448 cites W2153099927 @default.
- W4229374448 cites W2155632266 @default.
- W4229374448 cites W2156124327 @default.
- W4229374448 cites W2163326536 @default.
- W4229374448 cites W2166325215 @default.
- W4229374448 cites W2168587151 @default.