Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229375568> ?p ?o ?g. }
- W4229375568 endingPage "108935" @default.
- W4229375568 startingPage "108935" @default.
- W4229375568 abstract "Maps of the distribution and abundance of dominant plants derived from satellite data are essential for ecological research and management, particularly in the vast semiarid shrub-steppe. Appropriate application of these maps requires an understanding of model accuracy and precision, and how it might vary across space, time, and different vegetation types. For a 113 k Ha burn area, we compared modeled maps of different vegetation cover types created from satellite data to ‘benchmark” models based on intensive field sampling (∼1500–2000 plots resampled annually for 5 years) for three new satellite-derived models: USDA Rangeland Analysis Platform (RAP), the USGS Rangeland Condition Monitoring Assessment and Projection (RCMAP), and USGS fractional estimate of exotic annual grass cover (USGS-fractional-EAG). We assessed out-of-sample point accuracy and asked if and how accuracy changed each year due to vegetation shifts, new images, and model improvements (i.e. model versions). We also assessed how map agreement between satellite-based and field-based models changed with scale of application, topography, and time since fire. Accuracy and map agreement varied considerably among the vegetation types and across time and space (r2 ranging from 0 to 0.53), and some of the variability was predictable. All models tended to over or underestimate cover when field-measured cover was relatively low or high, respectively, i.e. a “false moderating effect”. Accuracy was greater and improved with newer versions of RAP (+0.05 to 0.29 r2) compared to RCMAP and USGS fractional model estimates, and in some cases was greater than field-based models. Variability in map agreement tended to decrease with larger areas sampled (particularly in areas >12 km), and this scale dependency was more evident in RAP and USGS-fractional-EAG models. Creating a “fair” basis for comparison of spatial models of low-statured semiarid vegetation derived from satellite compared to field data is not trivial because scaling the field data to the scale of large satellite pixels (or downscaling satellite-based models to field scale) requires modeling and associated model uncertainty. Accuracy can vary considerably and understanding the variation can help guide application of the models to the appropriate time, place, and variables." @default.
- W4229375568 created "2022-05-10" @default.
- W4229375568 creator A5002624848 @default.
- W4229375568 creator A5082909664 @default.
- W4229375568 date "2022-06-01" @default.
- W4229375568 modified "2023-10-18" @default.
- W4229375568 title "How do accuracy and model agreement vary with versioning, scale, and landscape heterogeneity for satellite-derived vegetation maps in sagebrush steppe?" @default.
- W4229375568 cites W1499492593 @default.
- W4229375568 cites W166208625 @default.
- W4229375568 cites W1965825034 @default.
- W4229375568 cites W1967182671 @default.
- W4229375568 cites W1967731758 @default.
- W4229375568 cites W1975479885 @default.
- W4229375568 cites W1977085232 @default.
- W4229375568 cites W1995914975 @default.
- W4229375568 cites W1996408223 @default.
- W4229375568 cites W2025209908 @default.
- W4229375568 cites W2026169687 @default.
- W4229375568 cites W2030025097 @default.
- W4229375568 cites W2032164272 @default.
- W4229375568 cites W2059888625 @default.
- W4229375568 cites W2068792798 @default.
- W4229375568 cites W2077690345 @default.
- W4229375568 cites W2118637029 @default.
- W4229375568 cites W2132545125 @default.
- W4229375568 cites W2163006017 @default.
- W4229375568 cites W2179756869 @default.
- W4229375568 cites W2560619597 @default.
- W4229375568 cites W2568846688 @default.
- W4229375568 cites W2807961570 @default.
- W4229375568 cites W2808604707 @default.
- W4229375568 cites W2826987470 @default.
- W4229375568 cites W2887030530 @default.
- W4229375568 cites W2900347300 @default.
- W4229375568 cites W2911314561 @default.
- W4229375568 cites W2917165927 @default.
- W4229375568 cites W2952487387 @default.
- W4229375568 cites W2954811610 @default.
- W4229375568 cites W2980990633 @default.
- W4229375568 cites W3124046728 @default.
- W4229375568 cites W3133499386 @default.
- W4229375568 cites W3135293663 @default.
- W4229375568 cites W3155671651 @default.
- W4229375568 doi "https://doi.org/10.1016/j.ecolind.2022.108935" @default.
- W4229375568 hasPublicationYear "2022" @default.
- W4229375568 type Work @default.
- W4229375568 citedByCount "5" @default.
- W4229375568 countsByYear W42293755682022 @default.
- W4229375568 countsByYear W42293755682023 @default.
- W4229375568 crossrefType "journal-article" @default.
- W4229375568 hasAuthorship W4229375568A5002624848 @default.
- W4229375568 hasAuthorship W4229375568A5082909664 @default.
- W4229375568 hasBestOaLocation W42293755681 @default.
- W4229375568 hasConcept C100970517 @default.
- W4229375568 hasConcept C105895522 @default.
- W4229375568 hasConcept C106131492 @default.
- W4229375568 hasConcept C127413603 @default.
- W4229375568 hasConcept C130989795 @default.
- W4229375568 hasConcept C140779682 @default.
- W4229375568 hasConcept C142724271 @default.
- W4229375568 hasConcept C146978453 @default.
- W4229375568 hasConcept C18903297 @default.
- W4229375568 hasConcept C19269812 @default.
- W4229375568 hasConcept C202444582 @default.
- W4229375568 hasConcept C205649164 @default.
- W4229375568 hasConcept C2776133958 @default.
- W4229375568 hasConcept C2778102629 @default.
- W4229375568 hasConcept C2778755073 @default.
- W4229375568 hasConcept C31972630 @default.
- W4229375568 hasConcept C33923547 @default.
- W4229375568 hasConcept C39432304 @default.
- W4229375568 hasConcept C41008148 @default.
- W4229375568 hasConcept C54286561 @default.
- W4229375568 hasConcept C58640448 @default.
- W4229375568 hasConcept C62649853 @default.
- W4229375568 hasConcept C71924100 @default.
- W4229375568 hasConcept C86803240 @default.
- W4229375568 hasConcept C9652623 @default.
- W4229375568 hasConceptScore W4229375568C100970517 @default.
- W4229375568 hasConceptScore W4229375568C105895522 @default.
- W4229375568 hasConceptScore W4229375568C106131492 @default.
- W4229375568 hasConceptScore W4229375568C127413603 @default.
- W4229375568 hasConceptScore W4229375568C130989795 @default.
- W4229375568 hasConceptScore W4229375568C140779682 @default.
- W4229375568 hasConceptScore W4229375568C142724271 @default.
- W4229375568 hasConceptScore W4229375568C146978453 @default.
- W4229375568 hasConceptScore W4229375568C18903297 @default.
- W4229375568 hasConceptScore W4229375568C19269812 @default.
- W4229375568 hasConceptScore W4229375568C202444582 @default.
- W4229375568 hasConceptScore W4229375568C205649164 @default.
- W4229375568 hasConceptScore W4229375568C2776133958 @default.
- W4229375568 hasConceptScore W4229375568C2778102629 @default.
- W4229375568 hasConceptScore W4229375568C2778755073 @default.
- W4229375568 hasConceptScore W4229375568C31972630 @default.
- W4229375568 hasConceptScore W4229375568C33923547 @default.
- W4229375568 hasConceptScore W4229375568C39432304 @default.
- W4229375568 hasConceptScore W4229375568C41008148 @default.
- W4229375568 hasConceptScore W4229375568C54286561 @default.