Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229376280> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4229376280 abstract "<sec> <title>BACKGROUND</title> Making clinical decisions about the treatment of Intracranial Aneurysms (IA) is not straightforward: small IAs in certain arteries may rupture while larger at others do not. Since many IA’s may not rupture for many years the risk of side effects from treatment prior to rupture must be weighed against the risk of SAH. Existing statistical and traditional approaches neither provide an accurate prediction of aneurysmal rupture nor offer a quantitative comparison among a group of SAH risk factors. </sec> <sec> <title>OBJECTIVE</title> This paper evaluates the shortcomings of the PHASES and UIATS scores on retrospective data. Additionally, to address the complex challenge of SAH prediction, we develop an interpretable machine learning and data mining-based framework for the individualized rupture risk prediction of saccular intracranial aneurysm (SIA), and the aneurysmal rupture criticality prediction index for a set of risk factors to perform its relative comparison with other cases. </sec> <sec> <title>METHODS</title> The proposed AI framework predicts the 5-year and lifetime rupture risk of intracranial aneurysms by training machine learning models based on an aneurysm’s location and shape. Additionally, it uses an ensemble learning model that is trained on data of all potential IA locations. Next, we employ the longitudinal data of 30 patients to develop a linear regression-based model to predict an aneurysm’s growth score. We use the Apriori algorithm to identify risk factors which carry a strong association with aneurysmal rupture for each combination of location and associated rupture risk factors. We compare the results not only with PHASES and UIATS scores but also with the scores of a multidisciplinary team of neurosurgeons. </sec> <sec> <title>RESULTS</title> The PHASES and UIATS scores show sensitivities of 22%, and 35%, and specificities of 76% and 79%, respectively. For the proposed framework, location-specific models show precision and recall of 93% and 90% for the Middle Cerebral Artery, 83% and 80% for the Anterior Communicating Artery, and 80% and 80% for the Supraclinoid Internal Carotid Artery. The ensemble method shows both precision and recall of 80%. The validation of the models on unseen data shows that the proposed framework performs better than our control group of neurosurgeons. Data-driven knowledge produces comparisons among 61 risk factor combinations, 11 ranked minor, 8 moderate, 41 severe, and one of which is a critical factor. </sec> <sec> <title>CONCLUSIONS</title> The PHASES and UIATS scores may only provide weak assistance in the clinical decision-making process of aneurysm treatment, particularly when it comes to the prediction of tiny aneurysms (those less than 5mm). The validation of the proposed framework, using an independent cohort (n=148), shows that it is possible to predict individualized rupture risk of saccular intracranial aneurysms of different sizes, including tiny ones. Apart from determining rupture probability in specific cases, the proposed Aneurysmal Rupture Criticality Prediction (ARCP) score could be used in training residents, both in understanding and in the ability to explain how the group of risk factors contribute to both 5-year and lifetime rupture risk. </sec>" @default.
- W4229376280 created "2022-05-10" @default.
- W4229376280 creator A5024102795 @default.
- W4229376280 creator A5060377460 @default.
- W4229376280 creator A5065781374 @default.
- W4229376280 creator A5071368130 @default.
- W4229376280 creator A5081011764 @default.
- W4229376280 date "2022-04-13" @default.
- W4229376280 modified "2023-09-26" @default.
- W4229376280 title "Toward Grading Subarachnoid Hemorrhage Risk Prediction: A Machine Learning-based Aneurysm Rupture Score (Preprint)" @default.
- W4229376280 cites W1576851948 @default.
- W4229376280 cites W1915219863 @default.
- W4229376280 cites W1992646622 @default.
- W4229376280 cites W2018225215 @default.
- W4229376280 cites W2021307132 @default.
- W4229376280 cites W2080021029 @default.
- W4229376280 cites W2100896768 @default.
- W4229376280 cites W2105119539 @default.
- W4229376280 cites W2111428462 @default.
- W4229376280 cites W2113713760 @default.
- W4229376280 cites W2158147889 @default.
- W4229376280 cites W2185602086 @default.
- W4229376280 cites W2484472243 @default.
- W4229376280 cites W2751774791 @default.
- W4229376280 cites W2774102760 @default.
- W4229376280 cites W2792558209 @default.
- W4229376280 cites W2884759522 @default.
- W4229376280 cites W2921409112 @default.
- W4229376280 cites W2956418867 @default.
- W4229376280 cites W2965090092 @default.
- W4229376280 cites W2999466503 @default.
- W4229376280 cites W3019062669 @default.
- W4229376280 cites W3092053216 @default.
- W4229376280 cites W3103744553 @default.
- W4229376280 cites W3113619380 @default.
- W4229376280 cites W3140149444 @default.
- W4229376280 cites W3144985763 @default.
- W4229376280 cites W4249939687 @default.
- W4229376280 cites W7677535 @default.
- W4229376280 doi "https://doi.org/10.2196/preprints.38698" @default.
- W4229376280 hasPublicationYear "2022" @default.
- W4229376280 type Work @default.
- W4229376280 citedByCount "0" @default.
- W4229376280 crossrefType "posted-content" @default.
- W4229376280 hasAuthorship W4229376280A5024102795 @default.
- W4229376280 hasAuthorship W4229376280A5060377460 @default.
- W4229376280 hasAuthorship W4229376280A5065781374 @default.
- W4229376280 hasAuthorship W4229376280A5071368130 @default.
- W4229376280 hasAuthorship W4229376280A5081011764 @default.
- W4229376280 hasConcept C119857082 @default.
- W4229376280 hasConcept C126838900 @default.
- W4229376280 hasConcept C141071460 @default.
- W4229376280 hasConcept C154945302 @default.
- W4229376280 hasConcept C2776098176 @default.
- W4229376280 hasConcept C2777736543 @default.
- W4229376280 hasConcept C41008148 @default.
- W4229376280 hasConcept C45804977 @default.
- W4229376280 hasConcept C71924100 @default.
- W4229376280 hasConceptScore W4229376280C119857082 @default.
- W4229376280 hasConceptScore W4229376280C126838900 @default.
- W4229376280 hasConceptScore W4229376280C141071460 @default.
- W4229376280 hasConceptScore W4229376280C154945302 @default.
- W4229376280 hasConceptScore W4229376280C2776098176 @default.
- W4229376280 hasConceptScore W4229376280C2777736543 @default.
- W4229376280 hasConceptScore W4229376280C41008148 @default.
- W4229376280 hasConceptScore W4229376280C45804977 @default.
- W4229376280 hasConceptScore W4229376280C71924100 @default.
- W4229376280 hasLocation W42293762801 @default.
- W4229376280 hasOpenAccess W4229376280 @default.
- W4229376280 hasPrimaryLocation W42293762801 @default.
- W4229376280 hasRelatedWork W2011744972 @default.
- W4229376280 hasRelatedWork W2023684400 @default.
- W4229376280 hasRelatedWork W2024110249 @default.
- W4229376280 hasRelatedWork W2058520121 @default.
- W4229376280 hasRelatedWork W2082302807 @default.
- W4229376280 hasRelatedWork W2164911258 @default.
- W4229376280 hasRelatedWork W2392912153 @default.
- W4229376280 hasRelatedWork W2409762712 @default.
- W4229376280 hasRelatedWork W2683539452 @default.
- W4229376280 hasRelatedWork W4293440023 @default.
- W4229376280 isParatext "false" @default.
- W4229376280 isRetracted "false" @default.
- W4229376280 workType "article" @default.