Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229376887> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4229376887 endingPage "111439" @default.
- W4229376887 startingPage "111439" @default.
- W4229376887 abstract "Regulations on Greenhouse Gas (GHG) ship's emissions and air pollutant are becoming more restrictive. Therefore, a big effort is being put into ship efficiency discussion, specially on predictive models related to route optimization, fuel consumption and air emissions. This paper compares machine learning predictive algorithms, based on the following techniques: least-squares, decision trees and neural networks, to estimate ship propulsion power between two 8400 TEU container ships from the same series. Additionally, the influence of having a predictive algorithm trained with data of its sister ships is invesitgated. The data used in this study were recorded from 2009 to 2014 reaching almost 290,000 entries. The results indicate that random forest regression model and decision trees ensemble models have the best fit for this purpose. It has also confirmed the feasibility of predicting the delivered power of a ship having a machine learning algorithm feed with a sister ship information despite differences in the route and/or operating conditions." @default.
- W4229376887 created "2022-05-10" @default.
- W4229376887 creator A5045221088 @default.
- W4229376887 creator A5082558596 @default.
- W4229376887 creator A5085729657 @default.
- W4229376887 date "2022-07-01" @default.
- W4229376887 modified "2023-09-28" @default.
- W4229376887 title "Comparative analysis of machine learning prediction models of container ships propulsion power" @default.
- W4229376887 cites W1899707185 @default.
- W4229376887 cites W1933995582 @default.
- W4229376887 cites W1975513190 @default.
- W4229376887 cites W2062180604 @default.
- W4229376887 cites W2135579862 @default.
- W4229376887 cites W2322912969 @default.
- W4229376887 cites W2332630645 @default.
- W4229376887 cites W2563022518 @default.
- W4229376887 cites W2766830746 @default.
- W4229376887 cites W2798035830 @default.
- W4229376887 cites W2891342831 @default.
- W4229376887 cites W2952062072 @default.
- W4229376887 cites W2970948886 @default.
- W4229376887 cites W3016035304 @default.
- W4229376887 cites W4249977334 @default.
- W4229376887 doi "https://doi.org/10.1016/j.oceaneng.2022.111439" @default.
- W4229376887 hasPublicationYear "2022" @default.
- W4229376887 type Work @default.
- W4229376887 citedByCount "2" @default.
- W4229376887 countsByYear W42293768872022 @default.
- W4229376887 countsByYear W42293768872023 @default.
- W4229376887 crossrefType "journal-article" @default.
- W4229376887 hasAuthorship W4229376887A5045221088 @default.
- W4229376887 hasAuthorship W4229376887A5082558596 @default.
- W4229376887 hasAuthorship W4229376887A5085729657 @default.
- W4229376887 hasConcept C1034443 @default.
- W4229376887 hasConcept C111472728 @default.
- W4229376887 hasConcept C119857082 @default.
- W4229376887 hasConcept C121332964 @default.
- W4229376887 hasConcept C127413603 @default.
- W4229376887 hasConcept C138885662 @default.
- W4229376887 hasConcept C146978453 @default.
- W4229376887 hasConcept C163258240 @default.
- W4229376887 hasConcept C169258074 @default.
- W4229376887 hasConcept C171146098 @default.
- W4229376887 hasConcept C18903297 @default.
- W4229376887 hasConcept C2778136018 @default.
- W4229376887 hasConcept C2781018962 @default.
- W4229376887 hasConcept C41008148 @default.
- W4229376887 hasConcept C45882903 @default.
- W4229376887 hasConcept C47737302 @default.
- W4229376887 hasConcept C50644808 @default.
- W4229376887 hasConcept C62520636 @default.
- W4229376887 hasConcept C78519656 @default.
- W4229376887 hasConcept C84525736 @default.
- W4229376887 hasConcept C86803240 @default.
- W4229376887 hasConceptScore W4229376887C1034443 @default.
- W4229376887 hasConceptScore W4229376887C111472728 @default.
- W4229376887 hasConceptScore W4229376887C119857082 @default.
- W4229376887 hasConceptScore W4229376887C121332964 @default.
- W4229376887 hasConceptScore W4229376887C127413603 @default.
- W4229376887 hasConceptScore W4229376887C138885662 @default.
- W4229376887 hasConceptScore W4229376887C146978453 @default.
- W4229376887 hasConceptScore W4229376887C163258240 @default.
- W4229376887 hasConceptScore W4229376887C169258074 @default.
- W4229376887 hasConceptScore W4229376887C171146098 @default.
- W4229376887 hasConceptScore W4229376887C18903297 @default.
- W4229376887 hasConceptScore W4229376887C2778136018 @default.
- W4229376887 hasConceptScore W4229376887C2781018962 @default.
- W4229376887 hasConceptScore W4229376887C41008148 @default.
- W4229376887 hasConceptScore W4229376887C45882903 @default.
- W4229376887 hasConceptScore W4229376887C47737302 @default.
- W4229376887 hasConceptScore W4229376887C50644808 @default.
- W4229376887 hasConceptScore W4229376887C62520636 @default.
- W4229376887 hasConceptScore W4229376887C78519656 @default.
- W4229376887 hasConceptScore W4229376887C84525736 @default.
- W4229376887 hasConceptScore W4229376887C86803240 @default.
- W4229376887 hasFunder F4320321091 @default.
- W4229376887 hasLocation W42293768871 @default.
- W4229376887 hasOpenAccess W4229376887 @default.
- W4229376887 hasPrimaryLocation W42293768871 @default.
- W4229376887 hasRelatedWork W3037915326 @default.
- W4229376887 hasRelatedWork W3134840015 @default.
- W4229376887 hasRelatedWork W3184277912 @default.
- W4229376887 hasRelatedWork W4283313480 @default.
- W4229376887 hasRelatedWork W4285407528 @default.
- W4229376887 hasRelatedWork W4312707991 @default.
- W4229376887 hasRelatedWork W4317732970 @default.
- W4229376887 hasRelatedWork W4321636153 @default.
- W4229376887 hasRelatedWork W4361296970 @default.
- W4229376887 hasRelatedWork W4366979180 @default.
- W4229376887 hasVolume "255" @default.
- W4229376887 isParatext "false" @default.
- W4229376887 isRetracted "false" @default.
- W4229376887 workType "article" @default.