Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229439118> ?p ?o ?g. }
- W4229439118 endingPage "5700" @default.
- W4229439118 startingPage "5700" @default.
- W4229439118 abstract "Coastal wetlands areas are heterogeneous, highly dynamic areas with complex interactions between terrestrial and marine ecosystems, making them essential for the biosphere and the development of human activities. Remote sensing offers a robust and cost-efficient mean to monitor coastal landscapes. In this paper, we evaluate the potential of using high resolution satellite imagery to classify land cover in a coastal area in Concepción, Chile, using a machine learning (ML) approach. Two machine learning algorithms, Support Vector Machine (SVM) and Random Forest (RF), were evaluated using four different scenarios: (I) using original spectral bands; (II) incorporating spectral indices; (III) adding texture metrics derived from the grey-level covariance co-occurrence matrix (GLCM); and (IV) including topographic variables derived from a digital terrain model. Both methods stand out for their excellent results, reaching an average overall accuracy of 88% for support vector machine and 90% for random forest. However, it is statistically shown that random forest performs better on this type of landscape. Furthermore, incorporating Digital Terrain Model (DTM)-derived metrics and texture measures was critical for the substantial improvement of SVM and RF. Although DTM did not increase the accuracy in SVM, this study makes a methodological contribution to the monitoring and mapping of water bodies’ landscapes in coastal cities with weak governance and data scarcity in coastal management." @default.
- W4229439118 created "2022-05-11" @default.
- W4229439118 creator A5032697803 @default.
- W4229439118 creator A5033788904 @default.
- W4229439118 creator A5044680131 @default.
- W4229439118 creator A5056048629 @default.
- W4229439118 creator A5056768218 @default.
- W4229439118 creator A5079777714 @default.
- W4229439118 date "2022-05-09" @default.
- W4229439118 modified "2023-10-18" @default.
- W4229439118 title "Mapping Coastal Wetlands Using Satellite Imagery and Machine Learning in a Highly Urbanized Landscape" @default.
- W4229439118 cites W1134158991 @default.
- W4229439118 cites W1565635109 @default.
- W4229439118 cites W1574516949 @default.
- W4229439118 cites W1577639657 @default.
- W4229439118 cites W1605736945 @default.
- W4229439118 cites W1927159739 @default.
- W4229439118 cites W1967150943 @default.
- W4229439118 cites W1971539164 @default.
- W4229439118 cites W1974527622 @default.
- W4229439118 cites W1977030628 @default.
- W4229439118 cites W1978125380 @default.
- W4229439118 cites W1983593466 @default.
- W4229439118 cites W1990653740 @default.
- W4229439118 cites W1993368797 @default.
- W4229439118 cites W1997091620 @default.
- W4229439118 cites W1997478538 @default.
- W4229439118 cites W1999410614 @default.
- W4229439118 cites W2017212187 @default.
- W4229439118 cites W2023163273 @default.
- W4229439118 cites W2029610469 @default.
- W4229439118 cites W2033531786 @default.
- W4229439118 cites W2036616939 @default.
- W4229439118 cites W2039067795 @default.
- W4229439118 cites W2044465660 @default.
- W4229439118 cites W2046113982 @default.
- W4229439118 cites W2046421861 @default.
- W4229439118 cites W2050669233 @default.
- W4229439118 cites W2052700773 @default.
- W4229439118 cites W2063907334 @default.
- W4229439118 cites W2064491772 @default.
- W4229439118 cites W2069089944 @default.
- W4229439118 cites W2073755771 @default.
- W4229439118 cites W2076605340 @default.
- W4229439118 cites W2077509829 @default.
- W4229439118 cites W2077707413 @default.
- W4229439118 cites W2081623219 @default.
- W4229439118 cites W2084413241 @default.
- W4229439118 cites W2087047858 @default.
- W4229439118 cites W2093462312 @default.
- W4229439118 cites W2102767685 @default.
- W4229439118 cites W2113410727 @default.
- W4229439118 cites W2117741496 @default.
- W4229439118 cites W2123775670 @default.
- W4229439118 cites W2124706543 @default.
- W4229439118 cites W2126154792 @default.
- W4229439118 cites W2137383746 @default.
- W4229439118 cites W2138499468 @default.
- W4229439118 cites W2145862305 @default.
- W4229439118 cites W2149257728 @default.
- W4229439118 cites W2149298154 @default.
- W4229439118 cites W2153635508 @default.
- W4229439118 cites W2155439653 @default.
- W4229439118 cites W2163410149 @default.
- W4229439118 cites W2168809519 @default.
- W4229439118 cites W2174268166 @default.
- W4229439118 cites W2254244704 @default.
- W4229439118 cites W2261059368 @default.
- W4229439118 cites W2288229159 @default.
- W4229439118 cites W2344373810 @default.
- W4229439118 cites W2409620547 @default.
- W4229439118 cites W2598998899 @default.
- W4229439118 cites W2604409186 @default.
- W4229439118 cites W2613571842 @default.
- W4229439118 cites W2619941902 @default.
- W4229439118 cites W2749428495 @default.
- W4229439118 cites W2777723490 @default.
- W4229439118 cites W2783934012 @default.
- W4229439118 cites W2790275230 @default.
- W4229439118 cites W2790731420 @default.
- W4229439118 cites W2794055043 @default.
- W4229439118 cites W2810043947 @default.
- W4229439118 cites W2885623990 @default.
- W4229439118 cites W2895353938 @default.
- W4229439118 cites W2898446904 @default.
- W4229439118 cites W2906417515 @default.
- W4229439118 cites W2906454573 @default.
- W4229439118 cites W2911964244 @default.
- W4229439118 cites W2913807206 @default.
- W4229439118 cites W2916106500 @default.
- W4229439118 cites W2943625038 @default.
- W4229439118 cites W2969945043 @default.
- W4229439118 cites W2977631046 @default.
- W4229439118 cites W3043213779 @default.
- W4229439118 cites W3087890773 @default.
- W4229439118 cites W3088162569 @default.
- W4229439118 cites W3099323827 @default.
- W4229439118 cites W3103554233 @default.