Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229439400> ?p ?o ?g. }
- W4229439400 endingPage "223" @default.
- W4229439400 startingPage "206" @default.
- W4229439400 abstract "This study conducts a systematic review of safety risk models and theories by summarizing and comparing them to identify the best strategies that can be adopted in a digital ‘conceptual’ safety risk model for highway workers’ safety. A mixed philosophical paradigm was adopted (that used both interpretivism and post-positivism couched within inductive reasoning) for a systematic review and comparative analysis of existing risk models and theories. The underlying research question formulated was: can existing models and theories of safety risk be used to develop this proposed digital risk model? In total, 607 papers (where each constituted a unit of analysis and secondary data source) were retrieved from Scopus and analysed through colour coding, classification and scientometric analysis using VOSViewer and Microsoft Excel software. The reviewed models were built on earlier safety risk models with minor upgrades. However, human elements (human errors, human risky behaviour and untrained staff) remained a constant characteristic, which contributed to safety risk occurrences in current and future trends of safety risk. Therefore, more proactive indicators such as risk perception, safety climate, and safety culture have been included in contemporary safety risk models and theories to address the human contribution to safety risk events. Highway construction safety risk literature is scant, and consequently, comprehensive risk prevention models have not been well examined in this area. Premised upon a rich synthesis of secondary data, a conceptual model was recommended, which proposes infusing machine learning predictive models (augmented with inherent resilient capabilities) to enable models to adapt and recover in an event of inevitable predicted risk incident (referred to as the resilient predictive model). This paper presents a novel resilient predictive safety risk conceptual model that employs machine learning algorithms to enhance the prevention of safety risk in the highway construction industry. Such a digital model contains adaptability and recovery mechanisms to adjust and bounce back when predicted safety risks are unavoidable. This will help prevent unfortunate events in time and control the impact of predicted safety risks that cannot be prevented." @default.
- W4229439400 created "2022-05-11" @default.
- W4229439400 creator A5042760662 @default.
- W4229439400 date "2022-05-09" @default.
- W4229439400 modified "2023-10-06" @default.
- W4229439400 title "A Review of Safety Risk Theories and Models and the Development of a Digital Highway Construction Safety Risk Model" @default.
- W4229439400 cites W1453719239 @default.
- W4229439400 cites W1506158789 @default.
- W4229439400 cites W1564735365 @default.
- W4229439400 cites W1595833668 @default.
- W4229439400 cites W1601795611 @default.
- W4229439400 cites W1854588543 @default.
- W4229439400 cites W1970311768 @default.
- W4229439400 cites W1971355143 @default.
- W4229439400 cites W1971449183 @default.
- W4229439400 cites W1975116352 @default.
- W4229439400 cites W1978190594 @default.
- W4229439400 cites W1978700756 @default.
- W4229439400 cites W1983741436 @default.
- W4229439400 cites W1985839240 @default.
- W4229439400 cites W1986247476 @default.
- W4229439400 cites W1987701506 @default.
- W4229439400 cites W1994107790 @default.
- W4229439400 cites W2003281149 @default.
- W4229439400 cites W2004444028 @default.
- W4229439400 cites W2009770593 @default.
- W4229439400 cites W2012180915 @default.
- W4229439400 cites W2014768794 @default.
- W4229439400 cites W2022158449 @default.
- W4229439400 cites W2029228840 @default.
- W4229439400 cites W2032046296 @default.
- W4229439400 cites W2033485206 @default.
- W4229439400 cites W2036863725 @default.
- W4229439400 cites W2038308494 @default.
- W4229439400 cites W2038390737 @default.
- W4229439400 cites W2044142939 @default.
- W4229439400 cites W2048026043 @default.
- W4229439400 cites W2048249708 @default.
- W4229439400 cites W2049624370 @default.
- W4229439400 cites W2053734194 @default.
- W4229439400 cites W2062511422 @default.
- W4229439400 cites W2064292914 @default.
- W4229439400 cites W2065455571 @default.
- W4229439400 cites W2076648161 @default.
- W4229439400 cites W2079283960 @default.
- W4229439400 cites W2087244322 @default.
- W4229439400 cites W2099235918 @default.
- W4229439400 cites W2110285718 @default.
- W4229439400 cites W2115753243 @default.
- W4229439400 cites W2118658083 @default.
- W4229439400 cites W2120197519 @default.
- W4229439400 cites W2122946964 @default.
- W4229439400 cites W2126550641 @default.
- W4229439400 cites W2134732423 @default.
- W4229439400 cites W2147927650 @default.
- W4229439400 cites W2150220236 @default.
- W4229439400 cites W2150552986 @default.
- W4229439400 cites W2158452578 @default.
- W4229439400 cites W2207774637 @default.
- W4229439400 cites W2277422832 @default.
- W4229439400 cites W2342537919 @default.
- W4229439400 cites W2413142185 @default.
- W4229439400 cites W2416149202 @default.
- W4229439400 cites W2508955996 @default.
- W4229439400 cites W2514224787 @default.
- W4229439400 cites W2556549032 @default.
- W4229439400 cites W2597225949 @default.
- W4229439400 cites W2763291112 @default.
- W4229439400 cites W2773005627 @default.
- W4229439400 cites W2782697883 @default.
- W4229439400 cites W2791114920 @default.
- W4229439400 cites W2801625336 @default.
- W4229439400 cites W2804672956 @default.
- W4229439400 cites W2876119426 @default.
- W4229439400 cites W2886599162 @default.
- W4229439400 cites W2919028531 @default.
- W4229439400 cites W2970968745 @default.
- W4229439400 cites W2971290202 @default.
- W4229439400 cites W2982054448 @default.
- W4229439400 cites W3005819549 @default.
- W4229439400 cites W3024408117 @default.
- W4229439400 cites W3033441560 @default.
- W4229439400 cites W3109066931 @default.
- W4229439400 cites W3118853240 @default.
- W4229439400 cites W3136600681 @default.
- W4229439400 cites W3177405077 @default.
- W4229439400 cites W3196176573 @default.
- W4229439400 cites W3203270182 @default.
- W4229439400 cites W420166547 @default.
- W4229439400 cites W4237032117 @default.
- W4229439400 cites W4243774437 @default.
- W4229439400 cites W4245927056 @default.
- W4229439400 cites W775639888 @default.
- W4229439400 doi "https://doi.org/10.3390/digital2020013" @default.
- W4229439400 hasPublicationYear "2022" @default.
- W4229439400 type Work @default.
- W4229439400 citedByCount "3" @default.
- W4229439400 countsByYear W42294394002022 @default.