Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229445662> ?p ?o ?g. }
- W4229445662 endingPage "262" @default.
- W4229445662 startingPage "262" @default.
- W4229445662 abstract "Image dehazing is a traditional task, yet it still presents arduous problems, especially in the removal of haze from the texture and edge information of an image. The state-of-the-art dehazing methods may result in the loss of some visual informative details and a decrease in visual quality. To improve dehazing quality, a novel dehazing model is proposed, based on a fractional derivative and data-driven regularization terms. In this model, the contrast constrained adaptive histogram equalization method is used as the data fidelity item; the fractional derivative is applied to avoid over-enhancement and noise amplification; and the proposed data-driven regularization terms are adopted to extract the local and non-local features of an image. Then, to solve the proposed model, half-quadratic splitting is used. Moreover, a dual-stream network based on Convolutional Neural Network (CNN) and Transformer is introduced to structure the data-driven regularization. Further, to estimate the atmospheric light, an atmospheric light model based on the fractional derivative and the atmospheric veil is proposed. Extensive experiments display the effectiveness of the proposed method, which surpasses the state-of-the-art methods for most synthetic and real-world images, quantitatively and qualitatively." @default.
- W4229445662 created "2022-05-11" @default.
- W4229445662 creator A5007600808 @default.
- W4229445662 creator A5019056174 @default.
- W4229445662 creator A5023886694 @default.
- W4229445662 creator A5033988887 @default.
- W4229445662 creator A5071177768 @default.
- W4229445662 creator A5076259590 @default.
- W4229445662 creator A5076517059 @default.
- W4229445662 creator A5081175923 @default.
- W4229445662 date "2022-05-09" @default.
- W4229445662 modified "2023-10-07" @default.
- W4229445662 title "Image Dehazing Based on Local and Non-Local Features" @default.
- W4229445662 cites W1529155083 @default.
- W4229445662 cites W1562554349 @default.
- W4229445662 cites W1982471090 @default.
- W4229445662 cites W1988918871 @default.
- W4229445662 cites W1995031544 @default.
- W4229445662 cites W2000594266 @default.
- W4229445662 cites W2012118748 @default.
- W4229445662 cites W2092663520 @default.
- W4229445662 cites W2125188192 @default.
- W4229445662 cites W2128254161 @default.
- W4229445662 cites W2156936307 @default.
- W4229445662 cites W2165015795 @default.
- W4229445662 cites W2194775991 @default.
- W4229445662 cites W2199808279 @default.
- W4229445662 cites W2277273574 @default.
- W4229445662 cites W2535625262 @default.
- W4229445662 cites W2581098337 @default.
- W4229445662 cites W2587136665 @default.
- W4229445662 cites W2620950432 @default.
- W4229445662 cites W2809980286 @default.
- W4229445662 cites W2894091889 @default.
- W4229445662 cites W2901543290 @default.
- W4229445662 cites W2919115771 @default.
- W4229445662 cites W2971256950 @default.
- W4229445662 cites W2974321789 @default.
- W4229445662 cites W2977216913 @default.
- W4229445662 cites W2985194834 @default.
- W4229445662 cites W2990451522 @default.
- W4229445662 cites W2999708269 @default.
- W4229445662 cites W3036615466 @default.
- W4229445662 cites W3043232579 @default.
- W4229445662 cites W3098531162 @default.
- W4229445662 cites W3105853701 @default.
- W4229445662 cites W312966621 @default.
- W4229445662 cites W3133769291 @default.
- W4229445662 cites W3135542706 @default.
- W4229445662 cites W3156267951 @default.
- W4229445662 cites W3164998414 @default.
- W4229445662 cites W3165036343 @default.
- W4229445662 cites W3177890994 @default.
- W4229445662 cites W3192562112 @default.
- W4229445662 cites W3195176541 @default.
- W4229445662 cites W4206543325 @default.
- W4229445662 cites W4212887065 @default.
- W4229445662 cites W4214844718 @default.
- W4229445662 cites W847235678 @default.
- W4229445662 doi "https://doi.org/10.3390/fractalfract6050262" @default.
- W4229445662 hasPublicationYear "2022" @default.
- W4229445662 type Work @default.
- W4229445662 citedByCount "9" @default.
- W4229445662 countsByYear W42294456622022 @default.
- W4229445662 countsByYear W42294456622023 @default.
- W4229445662 crossrefType "journal-article" @default.
- W4229445662 hasAuthorship W4229445662A5007600808 @default.
- W4229445662 hasAuthorship W4229445662A5019056174 @default.
- W4229445662 hasAuthorship W4229445662A5023886694 @default.
- W4229445662 hasAuthorship W4229445662A5033988887 @default.
- W4229445662 hasAuthorship W4229445662A5071177768 @default.
- W4229445662 hasAuthorship W4229445662A5076259590 @default.
- W4229445662 hasAuthorship W4229445662A5076517059 @default.
- W4229445662 hasAuthorship W4229445662A5081175923 @default.
- W4229445662 hasBestOaLocation W42294456621 @default.
- W4229445662 hasConcept C115961682 @default.
- W4229445662 hasConcept C153180895 @default.
- W4229445662 hasConcept C154945302 @default.
- W4229445662 hasConcept C2776135515 @default.
- W4229445662 hasConcept C2776459999 @default.
- W4229445662 hasConcept C31972630 @default.
- W4229445662 hasConcept C41008148 @default.
- W4229445662 hasConcept C53533937 @default.
- W4229445662 hasConcept C55020928 @default.
- W4229445662 hasConcept C76155785 @default.
- W4229445662 hasConceptScore W4229445662C115961682 @default.
- W4229445662 hasConceptScore W4229445662C153180895 @default.
- W4229445662 hasConceptScore W4229445662C154945302 @default.
- W4229445662 hasConceptScore W4229445662C2776135515 @default.
- W4229445662 hasConceptScore W4229445662C2776459999 @default.
- W4229445662 hasConceptScore W4229445662C31972630 @default.
- W4229445662 hasConceptScore W4229445662C41008148 @default.
- W4229445662 hasConceptScore W4229445662C53533937 @default.
- W4229445662 hasConceptScore W4229445662C55020928 @default.
- W4229445662 hasConceptScore W4229445662C76155785 @default.
- W4229445662 hasFunder F4320321001 @default.
- W4229445662 hasIssue "5" @default.
- W4229445662 hasLocation W42294456621 @default.