Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229446944> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4229446944 endingPage "5092" @default.
- W4229446944 startingPage "5081" @default.
- W4229446944 abstract "Abstract Purpose Fetal head circumference (HC) is an important biometric parameter that can be used to assess fetal development in obstetric clinical practice. Most of the existing methods use deep neural network to accomplish the task of automatic fetal HC measurement from two‐dimensional ultrasound images, and some of them achieved relatively high prediction accuracy. However, few of these methods focused on optimizing model efficiency performance. Our purpose is to develop a more efficient approach for this task, which could help doctors measure HC faster and would be more suitable for deployment on devices with scarce computing resources. Methods In this paper, we present a very lightweight deep convolutional neural network to achieve automatic fetal head segmentation from ultrasound images. By using sequential prediction network architecture, the proposed model could perform much faster inference while maintaining a high prediction accuracy. In addition, we used depthwise separable convolution to replace part of the standard convolution in the network and shrunk the input image to further improve model efficiency. After getting fetal head segmentation results, post‐processing, including morphological processing and least‐squares ellipse fitting, was applied to obtain the fetal HC. All experiments in this work were performed on a public dataset, HC18, with 999 fetal ultrasound images for training and 335 for testing. The dataset is publicly available on https://hc18.grand‐challenge.org/ and the code for our method is also publicly available on https://github.com/ApeMocker/CSM‐for‐fetal‐HC‐measurement . Results Our model has only 0.13 million [M] parameters and can achieve an inference speed of 28 [ms] per frame on a CPU and 0.194 [ms] per frame on a GPU, which far exceeds all existing deep learning‐based models as far as we know. Experimental results showed that the method achieved a mean absolute difference of 1.97( ± 1.89) [mm] and a Dice similarity coefficient of 97.61( ± 1.72) [%] on HC18 test set, which were comparable to the state of the art. Conclusion We presented a very lightweight deep learning‐based model to realize fast and accurate fetal head segmentation from two‐dimensional ultrasound image, which is then used for calculating the fetal HC. The proposed method could help obstetricians measure the fetal HC more efficiently with high accuracy, and has the potential to be applied to the situations where computing resources are relatively scarce." @default.
- W4229446944 created "2022-05-11" @default.
- W4229446944 creator A5007806208 @default.
- W4229446944 creator A5011063365 @default.
- W4229446944 creator A5020581776 @default.
- W4229446944 creator A5031648567 @default.
- W4229446944 date "2022-05-24" @default.
- W4229446944 modified "2023-10-15" @default.
- W4229446944 title "Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network" @default.
- W4229446944 cites W1991370230 @default.
- W4229446944 cites W2054181520 @default.
- W4229446944 cites W2065154920 @default.
- W4229446944 cites W2068400867 @default.
- W4229446944 cites W2083229832 @default.
- W4229446944 cites W2120023383 @default.
- W4229446944 cites W2133485297 @default.
- W4229446944 cites W2139375613 @default.
- W4229446944 cites W2294117661 @default.
- W4229446944 cites W2342820143 @default.
- W4229446944 cites W2395611524 @default.
- W4229446944 cites W2613049942 @default.
- W4229446944 cites W2700917049 @default.
- W4229446944 cites W2781960185 @default.
- W4229446944 cites W2888303187 @default.
- W4229446944 cites W2908300827 @default.
- W4229446944 cites W2962914239 @default.
- W4229446944 cites W2964089718 @default.
- W4229446944 cites W2964304707 @default.
- W4229446944 cites W2979459070 @default.
- W4229446944 cites W2980030301 @default.
- W4229446944 cites W3013799281 @default.
- W4229446944 cites W3040804770 @default.
- W4229446944 cites W3089348682 @default.
- W4229446944 cites W3089783114 @default.
- W4229446944 doi "https://doi.org/10.1002/mp.15700" @default.
- W4229446944 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35536111" @default.
- W4229446944 hasPublicationYear "2022" @default.
- W4229446944 type Work @default.
- W4229446944 citedByCount "5" @default.
- W4229446944 countsByYear W42294469442023 @default.
- W4229446944 crossrefType "journal-article" @default.
- W4229446944 hasAuthorship W4229446944A5007806208 @default.
- W4229446944 hasAuthorship W4229446944A5011063365 @default.
- W4229446944 hasAuthorship W4229446944A5020581776 @default.
- W4229446944 hasAuthorship W4229446944A5031648567 @default.
- W4229446944 hasConcept C108583219 @default.
- W4229446944 hasConcept C153180895 @default.
- W4229446944 hasConcept C154945302 @default.
- W4229446944 hasConcept C172680121 @default.
- W4229446944 hasConcept C2779234561 @default.
- W4229446944 hasConcept C2779811377 @default.
- W4229446944 hasConcept C31972630 @default.
- W4229446944 hasConcept C41008148 @default.
- W4229446944 hasConcept C50644808 @default.
- W4229446944 hasConcept C54355233 @default.
- W4229446944 hasConcept C81363708 @default.
- W4229446944 hasConcept C86803240 @default.
- W4229446944 hasConcept C89600930 @default.
- W4229446944 hasConceptScore W4229446944C108583219 @default.
- W4229446944 hasConceptScore W4229446944C153180895 @default.
- W4229446944 hasConceptScore W4229446944C154945302 @default.
- W4229446944 hasConceptScore W4229446944C172680121 @default.
- W4229446944 hasConceptScore W4229446944C2779234561 @default.
- W4229446944 hasConceptScore W4229446944C2779811377 @default.
- W4229446944 hasConceptScore W4229446944C31972630 @default.
- W4229446944 hasConceptScore W4229446944C41008148 @default.
- W4229446944 hasConceptScore W4229446944C50644808 @default.
- W4229446944 hasConceptScore W4229446944C54355233 @default.
- W4229446944 hasConceptScore W4229446944C81363708 @default.
- W4229446944 hasConceptScore W4229446944C86803240 @default.
- W4229446944 hasConceptScore W4229446944C89600930 @default.
- W4229446944 hasFunder F4320321001 @default.
- W4229446944 hasIssue "8" @default.
- W4229446944 hasLocation W42294469441 @default.
- W4229446944 hasLocation W42294469442 @default.
- W4229446944 hasOpenAccess W4229446944 @default.
- W4229446944 hasPrimaryLocation W42294469441 @default.
- W4229446944 hasRelatedWork W2005437358 @default.
- W4229446944 hasRelatedWork W2517104666 @default.
- W4229446944 hasRelatedWork W2731899572 @default.
- W4229446944 hasRelatedWork W2790662084 @default.
- W4229446944 hasRelatedWork W2999805992 @default.
- W4229446944 hasRelatedWork W3116150086 @default.
- W4229446944 hasRelatedWork W3133861977 @default.
- W4229446944 hasRelatedWork W4200173597 @default.
- W4229446944 hasRelatedWork W4312417841 @default.
- W4229446944 hasRelatedWork W4321369474 @default.
- W4229446944 hasVolume "49" @default.
- W4229446944 isParatext "false" @default.
- W4229446944 isRetracted "false" @default.
- W4229446944 workType "article" @default.