Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229448049> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4229448049 abstract "Massive clients can use large-scale machine learning using federated learning without revealing their raw data to the outside world. It's capable of preserving client personal information while also achieving great learning performance for the client's benefit. Existing research on federated learning is primarily concerned with increasing learning efficiency and model accuracy. But in reality, customers are unwilling to take part in the learning process unless they are compensated for their time and effort consequently, it is critical to figure out how to get customers involved in federated learning by motivating them successfully. Other areas like crowdsourcing, cloud computing, smart grid, etc. are simpler than designing an incentive structure for federated learning. To begin, it's impossible to determine the exact worth of the training data collected from each individual client. Second, different federated learning algorithms' learning performance is challenging to model. This work examines the design of a federated learning incentive system. Before we evaluate and contrast different strategies, we provide taxonomy of existing federated learning incentive mechanisms. There have also been some innovative ideas for enticing customers to take part in federated learning." @default.
- W4229448049 created "2022-05-11" @default.
- W4229448049 creator A5006371736 @default.
- W4229448049 creator A5012117722 @default.
- W4229448049 date "2022-02-16" @default.
- W4229448049 modified "2023-10-15" @default.
- W4229448049 title "Federated Learning: A Survey of a New Approach to Machine Learning" @default.
- W4229448049 cites W1970756365 @default.
- W4229448049 cites W2912213068 @default.
- W4229448049 cites W2975128548 @default.
- W4229448049 cites W2979389081 @default.
- W4229448049 cites W2984693664 @default.
- W4229448049 cites W2990700079 @default.
- W4229448049 cites W3001989995 @default.
- W4229448049 cites W3006403513 @default.
- W4229448049 cites W3007199357 @default.
- W4229448049 cites W3007279825 @default.
- W4229448049 cites W3008477738 @default.
- W4229448049 cites W3012990321 @default.
- W4229448049 cites W3015515533 @default.
- W4229448049 cites W3016378036 @default.
- W4229448049 cites W3018244678 @default.
- W4229448049 cites W3023574229 @default.
- W4229448049 cites W3026202797 @default.
- W4229448049 cites W3048634206 @default.
- W4229448049 cites W3093739212 @default.
- W4229448049 cites W3119386769 @default.
- W4229448049 cites W3130896299 @default.
- W4229448049 cites W3133273835 @default.
- W4229448049 cites W3134843574 @default.
- W4229448049 cites W3158011089 @default.
- W4229448049 cites W3163004056 @default.
- W4229448049 cites W3175646727 @default.
- W4229448049 doi "https://doi.org/10.1109/iceeict53079.2022.9768446" @default.
- W4229448049 hasPublicationYear "2022" @default.
- W4229448049 type Work @default.
- W4229448049 citedByCount "3" @default.
- W4229448049 countsByYear W42294480492022 @default.
- W4229448049 countsByYear W42294480492023 @default.
- W4229448049 crossrefType "proceedings-article" @default.
- W4229448049 hasAuthorship W4229448049A5006371736 @default.
- W4229448049 hasAuthorship W4229448049A5012117722 @default.
- W4229448049 hasConcept C111919701 @default.
- W4229448049 hasConcept C119857082 @default.
- W4229448049 hasConcept C132964779 @default.
- W4229448049 hasConcept C136764020 @default.
- W4229448049 hasConcept C154945302 @default.
- W4229448049 hasConcept C162324750 @default.
- W4229448049 hasConcept C175444787 @default.
- W4229448049 hasConcept C199360897 @default.
- W4229448049 hasConcept C2522767166 @default.
- W4229448049 hasConcept C29122968 @default.
- W4229448049 hasConcept C41008148 @default.
- W4229448049 hasConcept C56739046 @default.
- W4229448049 hasConcept C62230096 @default.
- W4229448049 hasConcept C77967617 @default.
- W4229448049 hasConcept C79974875 @default.
- W4229448049 hasConceptScore W4229448049C111919701 @default.
- W4229448049 hasConceptScore W4229448049C119857082 @default.
- W4229448049 hasConceptScore W4229448049C132964779 @default.
- W4229448049 hasConceptScore W4229448049C136764020 @default.
- W4229448049 hasConceptScore W4229448049C154945302 @default.
- W4229448049 hasConceptScore W4229448049C162324750 @default.
- W4229448049 hasConceptScore W4229448049C175444787 @default.
- W4229448049 hasConceptScore W4229448049C199360897 @default.
- W4229448049 hasConceptScore W4229448049C2522767166 @default.
- W4229448049 hasConceptScore W4229448049C29122968 @default.
- W4229448049 hasConceptScore W4229448049C41008148 @default.
- W4229448049 hasConceptScore W4229448049C56739046 @default.
- W4229448049 hasConceptScore W4229448049C62230096 @default.
- W4229448049 hasConceptScore W4229448049C77967617 @default.
- W4229448049 hasConceptScore W4229448049C79974875 @default.
- W4229448049 hasLocation W42294480491 @default.
- W4229448049 hasOpenAccess W4229448049 @default.
- W4229448049 hasPrimaryLocation W42294480491 @default.
- W4229448049 hasRelatedWork W135177976 @default.
- W4229448049 hasRelatedWork W1503094549 @default.
- W4229448049 hasRelatedWork W2025875869 @default.
- W4229448049 hasRelatedWork W2337920774 @default.
- W4229448049 hasRelatedWork W2511805441 @default.
- W4229448049 hasRelatedWork W2886410948 @default.
- W4229448049 hasRelatedWork W3032998312 @default.
- W4229448049 hasRelatedWork W3207526114 @default.
- W4229448049 hasRelatedWork W4318823662 @default.
- W4229448049 hasRelatedWork W4384486036 @default.
- W4229448049 isParatext "false" @default.
- W4229448049 isRetracted "false" @default.
- W4229448049 workType "article" @default.