Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229448214> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4229448214 abstract "Suspicious human activity detection is a major area of research and development that focuses on sophisticated machine learning techniques to reduce monitoring costs while enhancing safety. Since it is difficult for people to continually monitor public spaces, we need a real-time intelligent human activity recognition system that can identify suspicious activities. Current systems use low-accurate complex algorithms and techniques, making the system less reliable. This paper proposes a real-time suspicious human activity recognition with high accuracy by introducing a Convolutional Neural Network and using the 2D pose estimation technique to the system. This system can be used for home security, hospitals, and other areas of surveillance. Here, we are extracting skeletal images of humans from the input video frames using 2D pose estimation to identify the pose of humans in the videos. These poses are then passed to a pre-trained Convolutional Neural Network to classify different activities of humans like trespassing or not trespassing, fall or not fall, fighting, etc. After analyzing the pixels and activities, an alert can be produced through alarms, messages to phones, email the footage to the owner or security professional, and other techniques to prevent unusual activities. This system can be used in public places like shopping malls, railway stations, public roads, and even in homes, universities, and educational institutions." @default.
- W4229448214 created "2022-05-11" @default.
- W4229448214 creator A5035812167 @default.
- W4229448214 creator A5039514957 @default.
- W4229448214 creator A5056523188 @default.
- W4229448214 creator A5072226534 @default.
- W4229448214 creator A5081686352 @default.
- W4229448214 date "2022-03-24" @default.
- W4229448214 modified "2023-09-30" @default.
- W4229448214 title "Suspicious Human Activity Recognition using 2D Pose Estimation and Convolutional Neural Network" @default.
- W4229448214 cites W2002261403 @default.
- W4229448214 cites W2551239383 @default.
- W4229448214 cites W2591878254 @default.
- W4229448214 cites W2736707111 @default.
- W4229448214 cites W2753969215 @default.
- W4229448214 cites W2794833149 @default.
- W4229448214 cites W2914026900 @default.
- W4229448214 cites W2962730651 @default.
- W4229448214 cites W2963898179 @default.
- W4229448214 cites W3010903008 @default.
- W4229448214 cites W3011785450 @default.
- W4229448214 cites W3027736210 @default.
- W4229448214 doi "https://doi.org/10.1109/wispnet54241.2022.9767152" @default.
- W4229448214 hasPublicationYear "2022" @default.
- W4229448214 type Work @default.
- W4229448214 citedByCount "2" @default.
- W4229448214 countsByYear W42294482142023 @default.
- W4229448214 crossrefType "proceedings-article" @default.
- W4229448214 hasAuthorship W4229448214A5035812167 @default.
- W4229448214 hasAuthorship W4229448214A5039514957 @default.
- W4229448214 hasAuthorship W4229448214A5056523188 @default.
- W4229448214 hasAuthorship W4229448214A5072226534 @default.
- W4229448214 hasAuthorship W4229448214A5081686352 @default.
- W4229448214 hasConcept C108583219 @default.
- W4229448214 hasConcept C119857082 @default.
- W4229448214 hasConcept C121687571 @default.
- W4229448214 hasConcept C127413603 @default.
- W4229448214 hasConcept C154945302 @default.
- W4229448214 hasConcept C17744445 @default.
- W4229448214 hasConcept C201995342 @default.
- W4229448214 hasConcept C2986045029 @default.
- W4229448214 hasConcept C3116431 @default.
- W4229448214 hasConcept C31972630 @default.
- W4229448214 hasConcept C38652104 @default.
- W4229448214 hasConcept C41008148 @default.
- W4229448214 hasConcept C50644808 @default.
- W4229448214 hasConcept C52102323 @default.
- W4229448214 hasConcept C81363708 @default.
- W4229448214 hasConcept C96250715 @default.
- W4229448214 hasConceptScore W4229448214C108583219 @default.
- W4229448214 hasConceptScore W4229448214C119857082 @default.
- W4229448214 hasConceptScore W4229448214C121687571 @default.
- W4229448214 hasConceptScore W4229448214C127413603 @default.
- W4229448214 hasConceptScore W4229448214C154945302 @default.
- W4229448214 hasConceptScore W4229448214C17744445 @default.
- W4229448214 hasConceptScore W4229448214C201995342 @default.
- W4229448214 hasConceptScore W4229448214C2986045029 @default.
- W4229448214 hasConceptScore W4229448214C3116431 @default.
- W4229448214 hasConceptScore W4229448214C31972630 @default.
- W4229448214 hasConceptScore W4229448214C38652104 @default.
- W4229448214 hasConceptScore W4229448214C41008148 @default.
- W4229448214 hasConceptScore W4229448214C50644808 @default.
- W4229448214 hasConceptScore W4229448214C52102323 @default.
- W4229448214 hasConceptScore W4229448214C81363708 @default.
- W4229448214 hasConceptScore W4229448214C96250715 @default.
- W4229448214 hasLocation W42294482141 @default.
- W4229448214 hasOpenAccess W4229448214 @default.
- W4229448214 hasPrimaryLocation W42294482141 @default.
- W4229448214 hasRelatedWork W2052678124 @default.
- W4229448214 hasRelatedWork W2337926734 @default.
- W4229448214 hasRelatedWork W2612319427 @default.
- W4229448214 hasRelatedWork W2799614062 @default.
- W4229448214 hasRelatedWork W2963958939 @default.
- W4229448214 hasRelatedWork W3135542633 @default.
- W4229448214 hasRelatedWork W4311257506 @default.
- W4229448214 hasRelatedWork W4319994054 @default.
- W4229448214 hasRelatedWork W4320802194 @default.
- W4229448214 hasRelatedWork W4327499916 @default.
- W4229448214 isParatext "false" @default.
- W4229448214 isRetracted "false" @default.
- W4229448214 workType "article" @default.