Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229452393> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4229452393 endingPage "458" @default.
- W4229452393 startingPage "449" @default.
- W4229452393 abstract "In the medical diagnosis such as WBC (white blood cell), the scattergram images show the relationships between neutrophils, eosinophils, basophils, lymphocytes, and monocytes cells in the blood. For COVID-19 detection, the distributions of these cells differ in healthy and COVID-19 patients. This study proposes a hybrid CNN model for COVID-19 detection using scatter images obtained from WBC sub (differential-DIFF) parameters instead of CT or X-Ray scans. As a data set, the scattergram images of 335 COVID-19 suspects without chronic disease, collected from the biochemistry department of Elazig Fethi Sekin City Hospital, are examined. At first, the data augmentation is performed by applying HSV(Hue, Saturation, Value) and CIE-1931(Commission Internationale de l'éclairage) conversions. Thus, three different image large sets are obtained as a result of raw, CIE-1931, and HSV conversions. Secondly, feature extraction is applied by giving these images as separate inputs to the CNN model. Finally, the ReliefF feature extraction algorithm is applied to determine the most dominant features in feature vectors and to determine the features that maximize classification accuracy. The obtaining feature vector is classified with high-performance SVM in binary classification. The overall accuracy is 95.2%, and the F1-Score is 94.1%. The results show that the method can successfully detect COVID -19 disease using scattergram images and is an alternative to CT and X-Ray scans." @default.
- W4229452393 created "2022-05-11" @default.
- W4229452393 creator A5004319915 @default.
- W4229452393 creator A5007371615 @default.
- W4229452393 creator A5017604743 @default.
- W4229452393 creator A5022071695 @default.
- W4229452393 creator A5061046364 @default.
- W4229452393 date "2022-04-30" @default.
- W4229452393 modified "2023-10-16" @default.
- W4229452393 title "Automated COVID-19 Detection from WBC-DIFF Scattergram Images with Hybrid CNN Model Using Feature Selection" @default.
- W4229452393 doi "https://doi.org/10.18280/ts.390206" @default.
- W4229452393 hasPublicationYear "2022" @default.
- W4229452393 type Work @default.
- W4229452393 citedByCount "0" @default.
- W4229452393 crossrefType "journal-article" @default.
- W4229452393 hasAuthorship W4229452393A5004319915 @default.
- W4229452393 hasAuthorship W4229452393A5007371615 @default.
- W4229452393 hasAuthorship W4229452393A5017604743 @default.
- W4229452393 hasAuthorship W4229452393A5022071695 @default.
- W4229452393 hasAuthorship W4229452393A5061046364 @default.
- W4229452393 hasBestOaLocation W42294523931 @default.
- W4229452393 hasConcept C12267149 @default.
- W4229452393 hasConcept C138885662 @default.
- W4229452393 hasConcept C142724271 @default.
- W4229452393 hasConcept C148483581 @default.
- W4229452393 hasConcept C153180895 @default.
- W4229452393 hasConcept C154945302 @default.
- W4229452393 hasConcept C203014093 @default.
- W4229452393 hasConcept C2522874641 @default.
- W4229452393 hasConcept C2776401178 @default.
- W4229452393 hasConcept C2778488018 @default.
- W4229452393 hasConcept C2779134260 @default.
- W4229452393 hasConcept C3008058167 @default.
- W4229452393 hasConcept C33923547 @default.
- W4229452393 hasConcept C36372059 @default.
- W4229452393 hasConcept C41008148 @default.
- W4229452393 hasConcept C41895202 @default.
- W4229452393 hasConcept C524204448 @default.
- W4229452393 hasConcept C52622490 @default.
- W4229452393 hasConcept C71924100 @default.
- W4229452393 hasConcept C81363708 @default.
- W4229452393 hasConceptScore W4229452393C12267149 @default.
- W4229452393 hasConceptScore W4229452393C138885662 @default.
- W4229452393 hasConceptScore W4229452393C142724271 @default.
- W4229452393 hasConceptScore W4229452393C148483581 @default.
- W4229452393 hasConceptScore W4229452393C153180895 @default.
- W4229452393 hasConceptScore W4229452393C154945302 @default.
- W4229452393 hasConceptScore W4229452393C203014093 @default.
- W4229452393 hasConceptScore W4229452393C2522874641 @default.
- W4229452393 hasConceptScore W4229452393C2776401178 @default.
- W4229452393 hasConceptScore W4229452393C2778488018 @default.
- W4229452393 hasConceptScore W4229452393C2779134260 @default.
- W4229452393 hasConceptScore W4229452393C3008058167 @default.
- W4229452393 hasConceptScore W4229452393C33923547 @default.
- W4229452393 hasConceptScore W4229452393C36372059 @default.
- W4229452393 hasConceptScore W4229452393C41008148 @default.
- W4229452393 hasConceptScore W4229452393C41895202 @default.
- W4229452393 hasConceptScore W4229452393C524204448 @default.
- W4229452393 hasConceptScore W4229452393C52622490 @default.
- W4229452393 hasConceptScore W4229452393C71924100 @default.
- W4229452393 hasConceptScore W4229452393C81363708 @default.
- W4229452393 hasIssue "2" @default.
- W4229452393 hasLocation W42294523931 @default.
- W4229452393 hasOpenAccess W4229452393 @default.
- W4229452393 hasPrimaryLocation W42294523931 @default.
- W4229452393 hasRelatedWork W2043466148 @default.
- W4229452393 hasRelatedWork W2110823243 @default.
- W4229452393 hasRelatedWork W2341761244 @default.
- W4229452393 hasRelatedWork W2354314470 @default.
- W4229452393 hasRelatedWork W2811106690 @default.
- W4229452393 hasRelatedWork W4221081415 @default.
- W4229452393 hasRelatedWork W4293226380 @default.
- W4229452393 hasRelatedWork W4313906399 @default.
- W4229452393 hasRelatedWork W4321444604 @default.
- W4229452393 hasRelatedWork W4321487865 @default.
- W4229452393 hasVolume "39" @default.
- W4229452393 isParatext "false" @default.
- W4229452393 isRetracted "false" @default.
- W4229452393 workType "article" @default.