Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229453907> ?p ?o ?g. }
- W4229453907 endingPage "118" @default.
- W4229453907 startingPage "118" @default.
- W4229453907 abstract "Abstract Through its magnetic activity, the Sun governs the conditions in Earth’s vicinity, creating space weather events, which have drastic effects on our space- and ground-based technology. One of the most important solar magnetic features creating the space weather is the solar wind that originates from the coronal holes (CHs). The identification of the CHs on the Sun as one of the source regions of the solar wind is therefore crucial to achieve predictive capabilities. In this study, we used an unsupervised machine-learning method, k -means, to pixel-wise cluster the passband images of the Sun taken by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory in 171, 193, and 211 Å in different combinations. Our results show that the pixel-wise k -means clustering together with systematic pre- and postprocessing steps provides compatible results with those from complex methods, such as convolutional neural networks. More importantly, our study shows that there is a need for a CH database where a consensus about the CH boundaries is reached by observers independently. This database then can be used as the “ground truth,” when using a supervised method or just to evaluate the goodness of the models." @default.
- W4229453907 created "2022-05-11" @default.
- W4229453907 creator A5005094228 @default.
- W4229453907 creator A5029627235 @default.
- W4229453907 creator A5042366978 @default.
- W4229453907 creator A5044031443 @default.
- W4229453907 date "2022-05-01" @default.
- W4229453907 modified "2023-09-25" @default.
- W4229453907 title "Identification of Coronal Holes on AIA/SDO Images Using Unsupervised Machine Learning" @default.
- W4229453907 cites W1647241731 @default.
- W4229453907 cites W1981189397 @default.
- W4229453907 cites W2007619339 @default.
- W4229453907 cites W2015159529 @default.
- W4229453907 cites W2032691565 @default.
- W4229453907 cites W2043677973 @default.
- W4229453907 cites W2060756091 @default.
- W4229453907 cites W2062242034 @default.
- W4229453907 cites W2068614444 @default.
- W4229453907 cites W2076063813 @default.
- W4229453907 cites W2082719813 @default.
- W4229453907 cites W2094483427 @default.
- W4229453907 cites W2111078819 @default.
- W4229453907 cites W2121985084 @default.
- W4229453907 cites W2123402141 @default.
- W4229453907 cites W2125765013 @default.
- W4229453907 cites W2140405352 @default.
- W4229453907 cites W2142234851 @default.
- W4229453907 cites W2591123938 @default.
- W4229453907 cites W2891029962 @default.
- W4229453907 cites W2919115771 @default.
- W4229453907 cites W2981495424 @default.
- W4229453907 cites W3005640358 @default.
- W4229453907 cites W3038099711 @default.
- W4229453907 cites W3098917945 @default.
- W4229453907 cites W3099426790 @default.
- W4229453907 cites W3104078103 @default.
- W4229453907 cites W3104645775 @default.
- W4229453907 cites W3105794360 @default.
- W4229453907 cites W3106127514 @default.
- W4229453907 cites W3165030534 @default.
- W4229453907 cites W3165269205 @default.
- W4229453907 cites W3197339148 @default.
- W4229453907 cites W3198215949 @default.
- W4229453907 doi "https://doi.org/10.3847/1538-4357/ac5f43" @default.
- W4229453907 hasPublicationYear "2022" @default.
- W4229453907 type Work @default.
- W4229453907 citedByCount "2" @default.
- W4229453907 countsByYear W42294539072022 @default.
- W4229453907 countsByYear W42294539072023 @default.
- W4229453907 crossrefType "journal-article" @default.
- W4229453907 hasAuthorship W4229453907A5005094228 @default.
- W4229453907 hasAuthorship W4229453907A5029627235 @default.
- W4229453907 hasAuthorship W4229453907A5042366978 @default.
- W4229453907 hasAuthorship W4229453907A5044031443 @default.
- W4229453907 hasBestOaLocation W42294539071 @default.
- W4229453907 hasConcept C108411613 @default.
- W4229453907 hasConcept C115260700 @default.
- W4229453907 hasConcept C116834253 @default.
- W4229453907 hasConcept C120665830 @default.
- W4229453907 hasConcept C121332964 @default.
- W4229453907 hasConcept C127313418 @default.
- W4229453907 hasConcept C1276947 @default.
- W4229453907 hasConcept C146849305 @default.
- W4229453907 hasConcept C151325931 @default.
- W4229453907 hasConcept C153180895 @default.
- W4229453907 hasConcept C154945302 @default.
- W4229453907 hasConcept C160633673 @default.
- W4229453907 hasConcept C2776779350 @default.
- W4229453907 hasConcept C2779900269 @default.
- W4229453907 hasConcept C2779919027 @default.
- W4229453907 hasConcept C2781008069 @default.
- W4229453907 hasConcept C41008148 @default.
- W4229453907 hasConcept C44870925 @default.
- W4229453907 hasConcept C50644808 @default.
- W4229453907 hasConcept C59822182 @default.
- W4229453907 hasConcept C62520636 @default.
- W4229453907 hasConcept C62649853 @default.
- W4229453907 hasConcept C64162976 @default.
- W4229453907 hasConcept C72886185 @default.
- W4229453907 hasConcept C73555534 @default.
- W4229453907 hasConcept C8038995 @default.
- W4229453907 hasConcept C81363708 @default.
- W4229453907 hasConcept C86803240 @default.
- W4229453907 hasConcept C87355193 @default.
- W4229453907 hasConceptScore W4229453907C108411613 @default.
- W4229453907 hasConceptScore W4229453907C115260700 @default.
- W4229453907 hasConceptScore W4229453907C116834253 @default.
- W4229453907 hasConceptScore W4229453907C120665830 @default.
- W4229453907 hasConceptScore W4229453907C121332964 @default.
- W4229453907 hasConceptScore W4229453907C127313418 @default.
- W4229453907 hasConceptScore W4229453907C1276947 @default.
- W4229453907 hasConceptScore W4229453907C146849305 @default.
- W4229453907 hasConceptScore W4229453907C151325931 @default.
- W4229453907 hasConceptScore W4229453907C153180895 @default.
- W4229453907 hasConceptScore W4229453907C154945302 @default.
- W4229453907 hasConceptScore W4229453907C160633673 @default.
- W4229453907 hasConceptScore W4229453907C2776779350 @default.
- W4229453907 hasConceptScore W4229453907C2779900269 @default.