Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229454960> ?p ?o ?g. }
- W4229454960 endingPage "1060" @default.
- W4229454960 startingPage "1051" @default.
- W4229454960 abstract "Abstract Water availability is an essential factor in maintaining the integrity of ecological processes and is a source of socio‐economic development. However, socio‐economic development increases the pressure on water resources. Thus, understanding the flow regime in a watershed is essential to correct water resource management. In this study, we propose using dynamic quantile regression (DQR) to analyse trends in streamflow time series. DQR is a subset of the general class of semi‐parametric quantile regression models, which is tailored for time series modelling. It allows for autoregressive dynamics and modelling of trending behaviour and seasonal fluctuations. With a single model, it is possible to estimate the impacts of predictor variables on any given quantile of the response distribution instead of simply evaluating such effects on the mean response, as is typically done in other statistical approaches. In other words, it is possible to gain knowledge on how predictors impact the magnitude of streamflow in wet (upper quantiles) and dry seasons (lower quantiles) separately. We used DQR to model a streamflow time series of 27 gauges, distributed in the Araguaia watershed in central Brazil. The results show that, except for a single gauge (Alto Araguaia), there are downward streamflow trends, thus non‐stationary behaviour. The model yielded excellent data fits (pseudo‐ R 2 above 0.80), and it was possible to obtain a confidence interval for each slope. In our analysis, the usefulness of DQR modelling for assessing trends in streamflow time series is shown and, consequently, for achieving efficient water resource management." @default.
- W4229454960 created "2022-05-11" @default.
- W4229454960 creator A5022676431 @default.
- W4229454960 creator A5037999883 @default.
- W4229454960 creator A5076985219 @default.
- W4229454960 date "2022-05-09" @default.
- W4229454960 modified "2023-10-18" @default.
- W4229454960 title "Dynamic quantile regression for trend analysis of streamflow time series" @default.
- W4229454960 cites W1730150177 @default.
- W4229454960 cites W1973082817 @default.
- W4229454960 cites W1978333327 @default.
- W4229454960 cites W1987883465 @default.
- W4229454960 cites W1990384347 @default.
- W4229454960 cites W1998643818 @default.
- W4229454960 cites W2001979162 @default.
- W4229454960 cites W2007364739 @default.
- W4229454960 cites W2008602827 @default.
- W4229454960 cites W2009901517 @default.
- W4229454960 cites W2015053255 @default.
- W4229454960 cites W2017663864 @default.
- W4229454960 cites W2018764772 @default.
- W4229454960 cites W2038414681 @default.
- W4229454960 cites W2039841361 @default.
- W4229454960 cites W2044390304 @default.
- W4229454960 cites W2045650933 @default.
- W4229454960 cites W2082608203 @default.
- W4229454960 cites W2096904991 @default.
- W4229454960 cites W2099165877 @default.
- W4229454960 cites W2116664747 @default.
- W4229454960 cites W2125980029 @default.
- W4229454960 cites W2130091784 @default.
- W4229454960 cites W2136276425 @default.
- W4229454960 cites W2137077411 @default.
- W4229454960 cites W2141630770 @default.
- W4229454960 cites W2145818611 @default.
- W4229454960 cites W2146317308 @default.
- W4229454960 cites W2166757821 @default.
- W4229454960 cites W2167239677 @default.
- W4229454960 cites W2212636202 @default.
- W4229454960 cites W2261707892 @default.
- W4229454960 cites W2318680928 @default.
- W4229454960 cites W2342998116 @default.
- W4229454960 cites W2518119950 @default.
- W4229454960 cites W2796034401 @default.
- W4229454960 cites W2945851017 @default.
- W4229454960 cites W2964610105 @default.
- W4229454960 cites W2971703132 @default.
- W4229454960 cites W2982095305 @default.
- W4229454960 cites W3006601371 @default.
- W4229454960 cites W3036708439 @default.
- W4229454960 cites W3087199162 @default.
- W4229454960 cites W3087760627 @default.
- W4229454960 cites W3093391322 @default.
- W4229454960 cites W3115009269 @default.
- W4229454960 cites W3136287164 @default.
- W4229454960 cites W3162996510 @default.
- W4229454960 cites W3170757019 @default.
- W4229454960 cites W3190871991 @default.
- W4229454960 cites W4230096730 @default.
- W4229454960 cites W4241653265 @default.
- W4229454960 cites W4251244897 @default.
- W4229454960 doi "https://doi.org/10.1002/rra.3983" @default.
- W4229454960 hasPublicationYear "2022" @default.
- W4229454960 type Work @default.
- W4229454960 citedByCount "0" @default.
- W4229454960 crossrefType "journal-article" @default.
- W4229454960 hasAuthorship W4229454960A5022676431 @default.
- W4229454960 hasAuthorship W4229454960A5037999883 @default.
- W4229454960 hasAuthorship W4229454960A5076985219 @default.
- W4229454960 hasConcept C105795698 @default.
- W4229454960 hasConcept C118671147 @default.
- W4229454960 hasConcept C126645576 @default.
- W4229454960 hasConcept C127313418 @default.
- W4229454960 hasConcept C143724316 @default.
- W4229454960 hasConcept C149782125 @default.
- W4229454960 hasConcept C151406439 @default.
- W4229454960 hasConcept C151730666 @default.
- W4229454960 hasConcept C159877910 @default.
- W4229454960 hasConcept C205649164 @default.
- W4229454960 hasConcept C33923547 @default.
- W4229454960 hasConcept C39432304 @default.
- W4229454960 hasConcept C53739315 @default.
- W4229454960 hasConcept C58640448 @default.
- W4229454960 hasConcept C63817138 @default.
- W4229454960 hasConcept C83546350 @default.
- W4229454960 hasConceptScore W4229454960C105795698 @default.
- W4229454960 hasConceptScore W4229454960C118671147 @default.
- W4229454960 hasConceptScore W4229454960C126645576 @default.
- W4229454960 hasConceptScore W4229454960C127313418 @default.
- W4229454960 hasConceptScore W4229454960C143724316 @default.
- W4229454960 hasConceptScore W4229454960C149782125 @default.
- W4229454960 hasConceptScore W4229454960C151406439 @default.
- W4229454960 hasConceptScore W4229454960C151730666 @default.
- W4229454960 hasConceptScore W4229454960C159877910 @default.
- W4229454960 hasConceptScore W4229454960C205649164 @default.
- W4229454960 hasConceptScore W4229454960C33923547 @default.
- W4229454960 hasConceptScore W4229454960C39432304 @default.
- W4229454960 hasConceptScore W4229454960C53739315 @default.