Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229455280> ?p ?o ?g. }
- W4229455280 endingPage "1240" @default.
- W4229455280 startingPage "1227" @default.
- W4229455280 abstract "Abstract The significant contribution of greenhouse gas (GHG) emissions to global climate change and stratospheric ozone depletion has been calling the attention to assess the effect of agricultural management on them. Although machine learning (ML) methods have been widely used for the quantification of various inherent and dynamic soil properties, the accuracy of these techniques in the prediction of agricultural soil GHG emissions remains unclear. Therefore, this study aims at evaluating the performance of six different ML methods including simple linear regression, Cubist, support vector machines (SVM) with three different kernel functions, and random forest (RF) for the prediction of CO 2 and N 2 O fluxes from plots managed with and without cover cropping. The input parameters include typical meteorological data as well as soil temperature and soil water content. Results show that the daily flux of CO 2 is positively correlated with soil temperature and solar radiation and negatively with soil water content, whereas daily N 2 O flux is positively correlated with soil water content. For plots without cover cropping, Cubist and SVM with polynomial kernel function outperformed in the prediction of the testing dataset with RMSE of 14.18 kg ha –1 d –1 and 11.52 g ha –1 d –1 for daily CO 2 and N 2 O emissions, respectively. Where cover cropping was considered, SVM with radial basis function and Cubist were the best models in the prediction of daily CO 2 and N 2 O fluxes with respective RMSE values of 15.71 kg ha –1 d –1 and 14.12 g ha –1 d –1 . Considering the ranking of the models for all scenarios and both GHGs, SVM with nonlinear kernel functions and Cubist method surpassed other ML techniques." @default.
- W4229455280 created "2022-05-11" @default.
- W4229455280 creator A5021701747 @default.
- W4229455280 creator A5023175815 @default.
- W4229455280 date "2022-07-05" @default.
- W4229455280 modified "2023-09-26" @default.
- W4229455280 title "Prediction of greenhouse gas emissions from agricultural fields with and without cover crops" @default.
- W4229455280 cites W1726239842 @default.
- W4229455280 cites W1969248251 @default.
- W4229455280 cites W1991987183 @default.
- W4229455280 cites W1999897898 @default.
- W4229455280 cites W2052256275 @default.
- W4229455280 cites W2059310744 @default.
- W4229455280 cites W2070463198 @default.
- W4229455280 cites W2098317128 @default.
- W4229455280 cites W2128778929 @default.
- W4229455280 cites W2130683986 @default.
- W4229455280 cites W2197833374 @default.
- W4229455280 cites W2303468042 @default.
- W4229455280 cites W2328487243 @default.
- W4229455280 cites W2343199820 @default.
- W4229455280 cites W2523480608 @default.
- W4229455280 cites W2558024599 @default.
- W4229455280 cites W2560441608 @default.
- W4229455280 cites W2590150499 @default.
- W4229455280 cites W2736824943 @default.
- W4229455280 cites W2756130692 @default.
- W4229455280 cites W2766739242 @default.
- W4229455280 cites W2795393482 @default.
- W4229455280 cites W2796436601 @default.
- W4229455280 cites W2883288674 @default.
- W4229455280 cites W2884398710 @default.
- W4229455280 cites W2891297851 @default.
- W4229455280 cites W2911964244 @default.
- W4229455280 cites W2915581989 @default.
- W4229455280 cites W2925450837 @default.
- W4229455280 cites W2945281589 @default.
- W4229455280 cites W2948732118 @default.
- W4229455280 cites W2965296549 @default.
- W4229455280 cites W2984502893 @default.
- W4229455280 cites W3008234587 @default.
- W4229455280 cites W3023879950 @default.
- W4229455280 cites W3026805888 @default.
- W4229455280 cites W3032722442 @default.
- W4229455280 cites W3036873236 @default.
- W4229455280 cites W3037598601 @default.
- W4229455280 cites W3039421882 @default.
- W4229455280 cites W3047838984 @default.
- W4229455280 cites W3096831087 @default.
- W4229455280 cites W3107342418 @default.
- W4229455280 cites W3206639824 @default.
- W4229455280 cites W4207035343 @default.
- W4229455280 cites W4239510810 @default.
- W4229455280 cites W429766147 @default.
- W4229455280 doi "https://doi.org/10.1002/saj2.20429" @default.
- W4229455280 hasPublicationYear "2022" @default.
- W4229455280 type Work @default.
- W4229455280 citedByCount "1" @default.
- W4229455280 countsByYear W42294552802023 @default.
- W4229455280 crossrefType "journal-article" @default.
- W4229455280 hasAuthorship W4229455280A5021701747 @default.
- W4229455280 hasAuthorship W4229455280A5023175815 @default.
- W4229455280 hasConcept C105795698 @default.
- W4229455280 hasConcept C118518473 @default.
- W4229455280 hasConcept C119857082 @default.
- W4229455280 hasConcept C12267149 @default.
- W4229455280 hasConcept C127313418 @default.
- W4229455280 hasConcept C127413603 @default.
- W4229455280 hasConcept C13558536 @default.
- W4229455280 hasConcept C139945424 @default.
- W4229455280 hasConcept C159390177 @default.
- W4229455280 hasConcept C159750122 @default.
- W4229455280 hasConcept C187320778 @default.
- W4229455280 hasConcept C18903297 @default.
- W4229455280 hasConcept C24939127 @default.
- W4229455280 hasConcept C33923547 @default.
- W4229455280 hasConcept C39432304 @default.
- W4229455280 hasConcept C41008148 @default.
- W4229455280 hasConcept C47737302 @default.
- W4229455280 hasConcept C86803240 @default.
- W4229455280 hasConcept C91586092 @default.
- W4229455280 hasConceptScore W4229455280C105795698 @default.
- W4229455280 hasConceptScore W4229455280C118518473 @default.
- W4229455280 hasConceptScore W4229455280C119857082 @default.
- W4229455280 hasConceptScore W4229455280C12267149 @default.
- W4229455280 hasConceptScore W4229455280C127313418 @default.
- W4229455280 hasConceptScore W4229455280C127413603 @default.
- W4229455280 hasConceptScore W4229455280C13558536 @default.
- W4229455280 hasConceptScore W4229455280C139945424 @default.
- W4229455280 hasConceptScore W4229455280C159390177 @default.
- W4229455280 hasConceptScore W4229455280C159750122 @default.
- W4229455280 hasConceptScore W4229455280C187320778 @default.
- W4229455280 hasConceptScore W4229455280C18903297 @default.
- W4229455280 hasConceptScore W4229455280C24939127 @default.
- W4229455280 hasConceptScore W4229455280C33923547 @default.
- W4229455280 hasConceptScore W4229455280C39432304 @default.
- W4229455280 hasConceptScore W4229455280C41008148 @default.
- W4229455280 hasConceptScore W4229455280C47737302 @default.