Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229459183> ?p ?o ?g. }
- W4229459183 endingPage "350" @default.
- W4229459183 startingPage "331" @default.
- W4229459183 abstract "Approximate bisimulations for fuzzy automata have recently drawn attention of researches, since they allow to correlate different fuzzy automata which behave equivalently only to the chosen degree. This is of a particular interest in the state reduction of fuzzy automata, since it allows us to find a fuzzy automaton with a much smaller number of states and a slightly different behaviour from the original fuzzy automaton. The contribution of this paper is twofold. First, we study special types of approximate bisimulations which allow us to correlate all elements from both sets of states of two fuzzy automata. We show their properties, and particularly that they induce the so-called approximate isomorphism between the corresponding factor fuzzy automata. We pay a special attention to similarities and differences between homotypic and heterotypic approximate bisimulations. Second, we provide an efficient algorithm with the complexity O((m+n)n) for computing the greatest λ-approximate bisimulation between two finite fuzzy automata over the Gödel structure (if it exists), where λ is the threshold for approximation, n is the number of states and m is the number of non-zero transitions of the automata. This algorithm gives a great reduction of complexity when compared to the previously developed one, which has the complexity O(mn5). We also design an algorithm with the complexity O((m+n)n) for computing the greatest λ∈[0,1] such that there exists a λ-approximate bisimulation between two given finite fuzzy automata over the Gödel structure." @default.
- W4229459183 created "2022-05-11" @default.
- W4229459183 creator A5055424683 @default.
- W4229459183 creator A5060100526 @default.
- W4229459183 creator A5062281483 @default.
- W4229459183 date "2022-08-01" @default.
- W4229459183 modified "2023-10-09" @default.
- W4229459183 title "Characterization and computation of approximate bisimulations for fuzzy automata" @default.
- W4229459183 cites W1543732613 @default.
- W4229459183 cites W1557477173 @default.
- W4229459183 cites W1610582892 @default.
- W4229459183 cites W1639750162 @default.
- W4229459183 cites W1645024112 @default.
- W4229459183 cites W1965016852 @default.
- W4229459183 cites W1968466783 @default.
- W4229459183 cites W1971762305 @default.
- W4229459183 cites W1979882148 @default.
- W4229459183 cites W1980535239 @default.
- W4229459183 cites W1986245444 @default.
- W4229459183 cites W1989709510 @default.
- W4229459183 cites W1997070622 @default.
- W4229459183 cites W2011979623 @default.
- W4229459183 cites W2012133353 @default.
- W4229459183 cites W2018761380 @default.
- W4229459183 cites W2039645904 @default.
- W4229459183 cites W2041407107 @default.
- W4229459183 cites W2043791541 @default.
- W4229459183 cites W2043810488 @default.
- W4229459183 cites W2049004255 @default.
- W4229459183 cites W2053718620 @default.
- W4229459183 cites W2057714840 @default.
- W4229459183 cites W2059398904 @default.
- W4229459183 cites W2070689338 @default.
- W4229459183 cites W2077966306 @default.
- W4229459183 cites W2083896909 @default.
- W4229459183 cites W2086275630 @default.
- W4229459183 cites W2090349619 @default.
- W4229459183 cites W2097074325 @default.
- W4229459183 cites W2111335664 @default.
- W4229459183 cites W2118630939 @default.
- W4229459183 cites W2124325155 @default.
- W4229459183 cites W2144156859 @default.
- W4229459183 cites W2157202548 @default.
- W4229459183 cites W2167043222 @default.
- W4229459183 cites W2168425309 @default.
- W4229459183 cites W2169804080 @default.
- W4229459183 cites W2186273310 @default.
- W4229459183 cites W2272217514 @default.
- W4229459183 cites W2328819335 @default.
- W4229459183 cites W2559616919 @default.
- W4229459183 cites W2587846955 @default.
- W4229459183 cites W2594800718 @default.
- W4229459183 cites W2744076938 @default.
- W4229459183 cites W2756038926 @default.
- W4229459183 cites W2766383177 @default.
- W4229459183 cites W2767905287 @default.
- W4229459183 cites W2793512560 @default.
- W4229459183 cites W2801388205 @default.
- W4229459183 cites W2885345486 @default.
- W4229459183 cites W2963420093 @default.
- W4229459183 cites W2964854675 @default.
- W4229459183 cites W2968098646 @default.
- W4229459183 cites W3014779361 @default.
- W4229459183 cites W3020490804 @default.
- W4229459183 cites W3106985546 @default.
- W4229459183 cites W3110756423 @default.
- W4229459183 cites W3160065014 @default.
- W4229459183 cites W3195270167 @default.
- W4229459183 cites W748122520 @default.
- W4229459183 doi "https://doi.org/10.1016/j.fss.2022.05.003" @default.
- W4229459183 hasPublicationYear "2022" @default.
- W4229459183 type Work @default.
- W4229459183 citedByCount "5" @default.
- W4229459183 countsByYear W42294591832022 @default.
- W4229459183 countsByYear W42294591832023 @default.
- W4229459183 crossrefType "journal-article" @default.
- W4229459183 hasAuthorship W4229459183A5055424683 @default.
- W4229459183 hasAuthorship W4229459183A5060100526 @default.
- W4229459183 hasAuthorship W4229459183A5062281483 @default.
- W4229459183 hasConcept C111335779 @default.
- W4229459183 hasConcept C112505250 @default.
- W4229459183 hasConcept C11413529 @default.
- W4229459183 hasConcept C115624301 @default.
- W4229459183 hasConcept C116248031 @default.
- W4229459183 hasConcept C118615104 @default.
- W4229459183 hasConcept C135315306 @default.
- W4229459183 hasConcept C154945302 @default.
- W4229459183 hasConcept C174327141 @default.
- W4229459183 hasConcept C185592680 @default.
- W4229459183 hasConcept C203436722 @default.
- W4229459183 hasConcept C2524010 @default.
- W4229459183 hasConcept C33923547 @default.
- W4229459183 hasConcept C41008148 @default.
- W4229459183 hasConcept C58166 @default.
- W4229459183 hasConcept C8010536 @default.
- W4229459183 hasConcept C80444323 @default.
- W4229459183 hasConceptScore W4229459183C111335779 @default.
- W4229459183 hasConceptScore W4229459183C112505250 @default.