Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229459663> ?p ?o ?g. }
- W4229459663 endingPage "43" @default.
- W4229459663 startingPage "1" @default.
- W4229459663 abstract "Let Θ be the Wigner time reversal operator for spin half and let ϕ be a Weyl spinor. Then, for a left-transforming ϕ, the construct ζλΘϕ∗ yields a right-transforming spinor. If instead, ϕ is a right-transforming spinor, then the construct ζρΘϕ∗ results in a left-transforming spinor (ζλ,ρ are phase factors). This allows us to introduce two sets of four-component spinors. Setting ζλ and ζρ to ±i renders all eight spinors as eigenspinor of the charge conjugation operator C (called ELKO). This allows us to introduce two quantum fields. A calculation of the vacuum expectation value of the time-ordered product of the fields and their adjoints reveals the mass dimension of the fields to be one. Both fields are local in the canonical sense of quantum field theory. Interestingly, one of the fields is fermionic and the other bosonic. The mass dimension of the introduced fermionic fields and the matter fields of the Standard Model carry an intrinsic mismatch. As such, they provide natural darkness for the new fields with respect to the Standard Model doublets. The statistics and locality are controlled by a set of phases. These are explicitly given. Then we observe that in pμpμ= m2, Dirac took the simplest square root of the 4 × 4 identity matrix I (in I×m2, while introducing γμpμ as the square root of the left hand side of the dispersion relation), and as such he implicitly ignored the remaining fifteen. When we examine the remaining roots, we obtain additional bosonic and fermionic dark matter candidates of spin half. We point out that by early nineteen seventies, Dirac had suspected the existence of spin half bosons, in the same space as his fermions. This is interweaved with a detailed discussion of duals and adjoints. We study the fermionic self-interaction and interactions with a real scalar field. We show that a consistent interacting theory can be formulated using the ELKO adjoint up to one-loop thus circumventing the earlier problem of unitarity violation. We then undertake quantum field theoretic calculation that establishes the Newtonian gravitational interaction for a mass dimension one dark matter candidate. The report ends: (a) by studying the partition function and main thermodynamic properties of the mass dimension one fermionic field in the context of the dark matter halo of galaxies. For the Milky Way, the observational data of rotation curve fits quite well for a fermionic mass of about 23 eV; and (b) by introducing higher-dimensional ELKOs in braneworld scenario. After a brief introduction of some braneworld models, we review the localization of higher-dimensional ELKOs on flat and bent branes with appropriate localization mechanisms. We discuss the massless and massive Kaluza–Klein modes of ELKO fields on branes and give a comparison with other fields." @default.
- W4229459663 created "2022-05-11" @default.
- W4229459663 creator A5012340027 @default.
- W4229459663 creator A5013957671 @default.
- W4229459663 creator A5027487337 @default.
- W4229459663 creator A5036401346 @default.
- W4229459663 creator A5037526379 @default.
- W4229459663 creator A5070510533 @default.
- W4229459663 date "2022-07-01" @default.
- W4229459663 modified "2023-10-01" @default.
- W4229459663 title "Mass dimension one fermions: Constructing darkness" @default.
- W4229459663 cites W1020101895 @default.
- W4229459663 cites W1546572434 @default.
- W4229459663 cites W1615396054 @default.
- W4229459663 cites W1749857245 @default.
- W4229459663 cites W1770952684 @default.
- W4229459663 cites W1852589395 @default.
- W4229459663 cites W1912740786 @default.
- W4229459663 cites W1920313748 @default.
- W4229459663 cites W1944822406 @default.
- W4229459663 cites W1964023043 @default.
- W4229459663 cites W1964496967 @default.
- W4229459663 cites W1966535102 @default.
- W4229459663 cites W1967009971 @default.
- W4229459663 cites W1970736978 @default.
- W4229459663 cites W1973423558 @default.
- W4229459663 cites W1973484965 @default.
- W4229459663 cites W1975079051 @default.
- W4229459663 cites W1976387265 @default.
- W4229459663 cites W1980105645 @default.
- W4229459663 cites W1980686804 @default.
- W4229459663 cites W1982750944 @default.
- W4229459663 cites W1983208428 @default.
- W4229459663 cites W1985197056 @default.
- W4229459663 cites W1985326870 @default.
- W4229459663 cites W1986122819 @default.
- W4229459663 cites W1987570337 @default.
- W4229459663 cites W1989549778 @default.
- W4229459663 cites W1990725302 @default.
- W4229459663 cites W1991094357 @default.
- W4229459663 cites W1994145171 @default.
- W4229459663 cites W1995841230 @default.
- W4229459663 cites W1996985257 @default.
- W4229459663 cites W1997248677 @default.
- W4229459663 cites W2009558624 @default.
- W4229459663 cites W2010436468 @default.
- W4229459663 cites W2014735030 @default.
- W4229459663 cites W2016233972 @default.
- W4229459663 cites W2016745477 @default.
- W4229459663 cites W2017978462 @default.
- W4229459663 cites W2018966138 @default.
- W4229459663 cites W2019300638 @default.
- W4229459663 cites W2025208807 @default.
- W4229459663 cites W2028250535 @default.
- W4229459663 cites W2029103453 @default.
- W4229459663 cites W2033669382 @default.
- W4229459663 cites W2034458691 @default.
- W4229459663 cites W2036063021 @default.
- W4229459663 cites W2036676626 @default.
- W4229459663 cites W2037067112 @default.
- W4229459663 cites W2038713642 @default.
- W4229459663 cites W2038903575 @default.
- W4229459663 cites W2046442789 @default.
- W4229459663 cites W2048407555 @default.
- W4229459663 cites W2051235662 @default.
- W4229459663 cites W2056279447 @default.
- W4229459663 cites W2056571964 @default.
- W4229459663 cites W2062538222 @default.
- W4229459663 cites W2063042962 @default.
- W4229459663 cites W2064777467 @default.
- W4229459663 cites W2066128746 @default.
- W4229459663 cites W2066296534 @default.
- W4229459663 cites W2066645705 @default.
- W4229459663 cites W2067053212 @default.
- W4229459663 cites W2067123857 @default.
- W4229459663 cites W2067232290 @default.
- W4229459663 cites W2068777821 @default.
- W4229459663 cites W2069112285 @default.
- W4229459663 cites W2071442252 @default.
- W4229459663 cites W2071739278 @default.
- W4229459663 cites W2077075488 @default.
- W4229459663 cites W2078147560 @default.
- W4229459663 cites W2081151287 @default.
- W4229459663 cites W2081549207 @default.
- W4229459663 cites W2086341016 @default.
- W4229459663 cites W2088466563 @default.
- W4229459663 cites W2091546072 @default.
- W4229459663 cites W2094891949 @default.
- W4229459663 cites W2095014312 @default.
- W4229459663 cites W2095721433 @default.
- W4229459663 cites W2096403925 @default.
- W4229459663 cites W209656631 @default.
- W4229459663 cites W2097455345 @default.
- W4229459663 cites W2099611617 @default.
- W4229459663 cites W2099965031 @default.
- W4229459663 cites W2114125436 @default.
- W4229459663 cites W2117045846 @default.
- W4229459663 cites W2127366148 @default.