Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229460082> ?p ?o ?g. }
- W4229460082 endingPage "2287" @default.
- W4229460082 startingPage "2287" @default.
- W4229460082 abstract "Airborne laser scanning (ALS) is increasingly used for detailed vegetation structure mapping; however, there are many local-scale applications where it is economically ineffective or unfeasible from the temporal perspective. Unmanned aerial vehicles (UAVs) or airborne imagery (AImg) appear to be promising alternatives, but only a few studies have examined this assumption outside economically exploited areas (forests, orchards, etc.). The main aim of this study was to compare the usability of normalized digital surface models (nDSMs) photogrammetrically derived from UAV-borne and airborne imagery to those derived from low- (1–2 pts/m2) and high-density (ca. 20 pts/m2) ALS-scanning for the precise local-scale modelling of woody vegetation structures (the number and height of trees/shrubs) across six dynamically changing shrubland sites. The success of the detection of woody plant tops was initially almost 100% for UAV-based models; however, deeper analysis revealed that this was due to the fact that omission and commission errors were approximately equal and the real accuracy was approx. 70% for UAV-based models compared to 95.8% for the high-density ALS model. The percentage mean absolute errors (%MAE) of shrub/tree heights derived from UAV data ranged between 12.2 and 23.7%, and AImg height accuracy was relatively lower (%MAE: 21.4–47.4). Combining UAV-borne or AImg-based digital surface models (DSM) with ALS-based digital terrain models (DTMs) significantly improved the nDSM height accuracy (%MAE: 9.4–13.5 and 12.2–25.0, respectively) but failed to significantly improve the detection of the number of individual shrubs/trees. The height accuracy and detection success using low- or high-density ALS did not differ. Therefore, we conclude that UAV-borne imagery has the potential to replace custom ALS in specific local-scale applications, especially at dynamically changing sites where repeated ALS is costly, and the combination of such data with (albeit outdated and sparse) ALS-based digital terrain models can further improve the success of the use of such data." @default.
- W4229460082 created "2022-05-11" @default.
- W4229460082 creator A5074188709 @default.
- W4229460082 creator A5077675870 @default.
- W4229460082 creator A5089355660 @default.
- W4229460082 date "2022-05-09" @default.
- W4229460082 modified "2023-10-14" @default.
- W4229460082 title "UAV-Borne Imagery Can Supplement Airborne Lidar in the Precise Description of Dynamically Changing Shrubland Woody Vegetation" @default.
- W4229460082 cites W1522525389 @default.
- W4229460082 cites W1777443006 @default.
- W4229460082 cites W1966579280 @default.
- W4229460082 cites W1968744662 @default.
- W4229460082 cites W1990503995 @default.
- W4229460082 cites W1994585903 @default.
- W4229460082 cites W2043442349 @default.
- W4229460082 cites W2054397552 @default.
- W4229460082 cites W2059862423 @default.
- W4229460082 cites W2065258204 @default.
- W4229460082 cites W2080080852 @default.
- W4229460082 cites W2100524057 @default.
- W4229460082 cites W2122450383 @default.
- W4229460082 cites W2131058553 @default.
- W4229460082 cites W2158411533 @default.
- W4229460082 cites W2296685749 @default.
- W4229460082 cites W2313448762 @default.
- W4229460082 cites W2436656692 @default.
- W4229460082 cites W2556502614 @default.
- W4229460082 cites W2560462200 @default.
- W4229460082 cites W2569037512 @default.
- W4229460082 cites W2591466624 @default.
- W4229460082 cites W2594171050 @default.
- W4229460082 cites W2620234846 @default.
- W4229460082 cites W2735183788 @default.
- W4229460082 cites W2736175644 @default.
- W4229460082 cites W2739875383 @default.
- W4229460082 cites W2751920008 @default.
- W4229460082 cites W2752278344 @default.
- W4229460082 cites W2758681934 @default.
- W4229460082 cites W2793051750 @default.
- W4229460082 cites W2803583446 @default.
- W4229460082 cites W2804091777 @default.
- W4229460082 cites W2888238698 @default.
- W4229460082 cites W2895839935 @default.
- W4229460082 cites W2901733174 @default.
- W4229460082 cites W2921576101 @default.
- W4229460082 cites W2923900842 @default.
- W4229460082 cites W2936101281 @default.
- W4229460082 cites W2940696663 @default.
- W4229460082 cites W2953411856 @default.
- W4229460082 cites W2968616839 @default.
- W4229460082 cites W2969075701 @default.
- W4229460082 cites W2973135792 @default.
- W4229460082 cites W2993891310 @default.
- W4229460082 cites W3015952109 @default.
- W4229460082 cites W3028972014 @default.
- W4229460082 cites W3042040129 @default.
- W4229460082 cites W3172708988 @default.
- W4229460082 doi "https://doi.org/10.3390/rs14092287" @default.
- W4229460082 hasPublicationYear "2022" @default.
- W4229460082 type Work @default.
- W4229460082 citedByCount "1" @default.
- W4229460082 countsByYear W42294600822023 @default.
- W4229460082 crossrefType "journal-article" @default.
- W4229460082 hasAuthorship W4229460082A5074188709 @default.
- W4229460082 hasAuthorship W4229460082A5077675870 @default.
- W4229460082 hasAuthorship W4229460082A5089355660 @default.
- W4229460082 hasBestOaLocation W42294600821 @default.
- W4229460082 hasConcept C110872660 @default.
- W4229460082 hasConcept C120665830 @default.
- W4229460082 hasConcept C121332964 @default.
- W4229460082 hasConcept C141349535 @default.
- W4229460082 hasConcept C142724271 @default.
- W4229460082 hasConcept C161840515 @default.
- W4229460082 hasConcept C181843262 @default.
- W4229460082 hasConcept C18903297 @default.
- W4229460082 hasConcept C205649164 @default.
- W4229460082 hasConcept C2776133958 @default.
- W4229460082 hasConcept C2778091200 @default.
- W4229460082 hasConcept C2778755073 @default.
- W4229460082 hasConcept C2983128922 @default.
- W4229460082 hasConcept C39432304 @default.
- W4229460082 hasConcept C51399673 @default.
- W4229460082 hasConcept C520434653 @default.
- W4229460082 hasConcept C58640448 @default.
- W4229460082 hasConcept C59898753 @default.
- W4229460082 hasConcept C62649853 @default.
- W4229460082 hasConcept C71924100 @default.
- W4229460082 hasConcept C86803240 @default.
- W4229460082 hasConceptScore W4229460082C110872660 @default.
- W4229460082 hasConceptScore W4229460082C120665830 @default.
- W4229460082 hasConceptScore W4229460082C121332964 @default.
- W4229460082 hasConceptScore W4229460082C141349535 @default.
- W4229460082 hasConceptScore W4229460082C142724271 @default.
- W4229460082 hasConceptScore W4229460082C161840515 @default.
- W4229460082 hasConceptScore W4229460082C181843262 @default.
- W4229460082 hasConceptScore W4229460082C18903297 @default.
- W4229460082 hasConceptScore W4229460082C205649164 @default.
- W4229460082 hasConceptScore W4229460082C2776133958 @default.