Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229665000> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4229665000 abstract "Abstract purpose: To evaluate the image quality improvement in CTA of children with Takayasu arteritis (TAK) using a Deep learning image reconstruction (DLIR) in comparison to other reconstruction algorithms. Methods: 32 patients (9.14±4.51 years old) with TAK underwent neck, chest and abdominal CTA with 100kVp were enrolled. Images were reconstructed at 0.625mm slice thickness using Filtered Back-Projection (FBP), 50% adaptive statistical iterative reconstruction-V (ASIR-V), 100%ASIR-V and DLIR with high setting (DLIR-H). The CT number and standard deviation (SD) of the descending aorta and back muscle were measured and contrast-to-noise ratio (CNR) for aorta was calculated. The vessel visualization, overall image noise and diagnostic confidence were evaluated using a 5-point scale (5, excellent; 3, acceptable) by 2 observers. Results: There was no significant difference in CT number across all reconstructions. The image noise values (in HU) were 31.36±6.01, 24.96±4.69, 18.46±3.91 and 15.58±3.65, and CNR values for aorta were 11.93±2.12, 15.66±2.37, 22.54±3.34 and 24.02±4.55 with FBP, 50%ASIR-V, 100%ASIR-V and DLIR-H, respectively. The 100%ASIR-V and DLIR-H images had similar noise and CNR (all P>0.05), and both had lower noise and higher CNR than FBP and 50%ASIR-V images (all P<0.05). The subjective evaluation suggested that all images were diagnostic for large arteries, but only 50%ASIR-V and DLIR-H met the diagnostic requirement for small arteries (3.03±0.18 and 3.53±0.51). Conclusions: DLIR-H improves the CTA image quality and diagnostic confidence for TAK patients compared with 50%ASIR-V, and best balances image noise and spatial resolution compared with 100%ASIR-V." @default.
- W4229665000 created "2022-05-11" @default.
- W4229665000 creator A5017492768 @default.
- W4229665000 creator A5027855761 @default.
- W4229665000 creator A5041604690 @default.
- W4229665000 creator A5051136100 @default.
- W4229665000 creator A5072936792 @default.
- W4229665000 creator A5082199987 @default.
- W4229665000 creator A5087921958 @default.
- W4229665000 date "2021-09-21" @default.
- W4229665000 modified "2023-10-18" @default.
- W4229665000 title "Application of Deep Learning Image Reconstruction (DLIR) Algorithm to Improve Image Quality in CT Angiography of Children with Takayasu Arteritis" @default.
- W4229665000 doi "https://doi.org/10.21203/rs.3.rs-805973/v1" @default.
- W4229665000 hasPublicationYear "2021" @default.
- W4229665000 type Work @default.
- W4229665000 citedByCount "0" @default.
- W4229665000 crossrefType "posted-content" @default.
- W4229665000 hasAuthorship W4229665000A5017492768 @default.
- W4229665000 hasAuthorship W4229665000A5027855761 @default.
- W4229665000 hasAuthorship W4229665000A5041604690 @default.
- W4229665000 hasAuthorship W4229665000A5051136100 @default.
- W4229665000 hasAuthorship W4229665000A5072936792 @default.
- W4229665000 hasAuthorship W4229665000A5082199987 @default.
- W4229665000 hasAuthorship W4229665000A5087921958 @default.
- W4229665000 hasBestOaLocation W42296650001 @default.
- W4229665000 hasConcept C115961682 @default.
- W4229665000 hasConcept C126322002 @default.
- W4229665000 hasConcept C126838900 @default.
- W4229665000 hasConcept C141379421 @default.
- W4229665000 hasConcept C154945302 @default.
- W4229665000 hasConcept C197231052 @default.
- W4229665000 hasConcept C2779980429 @default.
- W4229665000 hasConcept C2780663194 @default.
- W4229665000 hasConcept C2989005 @default.
- W4229665000 hasConcept C35772409 @default.
- W4229665000 hasConcept C41008148 @default.
- W4229665000 hasConcept C55020928 @default.
- W4229665000 hasConcept C71924100 @default.
- W4229665000 hasConceptScore W4229665000C115961682 @default.
- W4229665000 hasConceptScore W4229665000C126322002 @default.
- W4229665000 hasConceptScore W4229665000C126838900 @default.
- W4229665000 hasConceptScore W4229665000C141379421 @default.
- W4229665000 hasConceptScore W4229665000C154945302 @default.
- W4229665000 hasConceptScore W4229665000C197231052 @default.
- W4229665000 hasConceptScore W4229665000C2779980429 @default.
- W4229665000 hasConceptScore W4229665000C2780663194 @default.
- W4229665000 hasConceptScore W4229665000C2989005 @default.
- W4229665000 hasConceptScore W4229665000C35772409 @default.
- W4229665000 hasConceptScore W4229665000C41008148 @default.
- W4229665000 hasConceptScore W4229665000C55020928 @default.
- W4229665000 hasConceptScore W4229665000C71924100 @default.
- W4229665000 hasLocation W42296650001 @default.
- W4229665000 hasOpenAccess W4229665000 @default.
- W4229665000 hasPrimaryLocation W42296650001 @default.
- W4229665000 hasRelatedWork W1202842 @default.
- W4229665000 hasRelatedWork W14750312 @default.
- W4229665000 hasRelatedWork W15249093 @default.
- W4229665000 hasRelatedWork W16938129 @default.
- W4229665000 hasRelatedWork W2044268 @default.
- W4229665000 hasRelatedWork W2606978 @default.
- W4229665000 hasRelatedWork W3155007 @default.
- W4229665000 hasRelatedWork W3609033 @default.
- W4229665000 hasRelatedWork W5202401 @default.
- W4229665000 hasRelatedWork W8257909 @default.
- W4229665000 isParatext "false" @default.
- W4229665000 isRetracted "false" @default.
- W4229665000 workType "article" @default.