Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229691029> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4229691029 endingPage "171" @default.
- W4229691029 startingPage "171" @default.
- W4229691029 abstract "Let $D$ be an arbitrary set of ${C^infty }$ vector fields on the ${C^infty }$ manifold $M$. It is shown that the orbits of $D$ are ${C^infty }$ submanifolds of $M$, and that, moreover, they are the maximal integral submanifolds of a certain ${C^infty }$ distribution ${P_D}$. (In general, the dimension of ${P_D}(m)$ will not be the same for all $m in M$.) The second main result gives necessary and sufficient conditions for a distribution to be integrable. These two results imply as easy corollaries the theorem of Chow about the points attainable by broken integral curves of a family of vector fields, and all the known results about integrability of distributions (i.e. the classical theorem of Frobenius for the case of constant dimension and the more recent work of Hermann, Nagano, Lobry and Matsuda). Hermann and Lobry studied orbits in connection with their work on the accessibility problem in control theory. Their method was to apply Chowâs theorem to the maximal integral submanifolds of the smallest distribution $Delta$ such that every vector field $X$ in the Lie algebra generated by $D$ belongs to $Delta$ (i.e. $X(m) in Delta (m)$ for every $m in M$). Their work therefore requires the additional assumption that $Delta$ be integrable. Here the opposite approach is taken. The orbits are studied directly, and the integrability of $Delta$ is not assumed in proving the first main result. It turns out that $Delta$ is integrable if and only if $Delta = {P_D}$, and this fact makes it possible to derive a characterization of integrability and Chowâs theorem. Therefore, the approach presented here generalizes and unifies the work of the authors quoted above." @default.
- W4229691029 created "2022-05-11" @default.
- W4229691029 creator A5041464632 @default.
- W4229691029 date "1973-06-01" @default.
- W4229691029 modified "2023-10-05" @default.
- W4229691029 title "Orbits of Families of Vector Fields and Integrability of Distributions" @default.
- W4229691029 doi "https://doi.org/10.2307/1996660" @default.
- W4229691029 hasPublicationYear "1973" @default.
- W4229691029 type Work @default.
- W4229691029 citedByCount "30" @default.
- W4229691029 countsByYear W42296910292017 @default.
- W4229691029 countsByYear W42296910292019 @default.
- W4229691029 countsByYear W42296910292020 @default.
- W4229691029 countsByYear W42296910292021 @default.
- W4229691029 countsByYear W42296910292022 @default.
- W4229691029 crossrefType "journal-article" @default.
- W4229691029 hasAuthorship W4229691029A5041464632 @default.
- W4229691029 hasBestOaLocation W42296910291 @default.
- W4229691029 hasConcept C110121322 @default.
- W4229691029 hasConcept C134306372 @default.
- W4229691029 hasConcept C183877218 @default.
- W4229691029 hasConcept C200741047 @default.
- W4229691029 hasConcept C202444582 @default.
- W4229691029 hasConcept C203946495 @default.
- W4229691029 hasConcept C2524010 @default.
- W4229691029 hasConcept C33676613 @default.
- W4229691029 hasConcept C33923547 @default.
- W4229691029 hasConcept C51568863 @default.
- W4229691029 hasConcept C91188154 @default.
- W4229691029 hasConcept C9652623 @default.
- W4229691029 hasConcept C99775784 @default.
- W4229691029 hasConceptScore W4229691029C110121322 @default.
- W4229691029 hasConceptScore W4229691029C134306372 @default.
- W4229691029 hasConceptScore W4229691029C183877218 @default.
- W4229691029 hasConceptScore W4229691029C200741047 @default.
- W4229691029 hasConceptScore W4229691029C202444582 @default.
- W4229691029 hasConceptScore W4229691029C203946495 @default.
- W4229691029 hasConceptScore W4229691029C2524010 @default.
- W4229691029 hasConceptScore W4229691029C33676613 @default.
- W4229691029 hasConceptScore W4229691029C33923547 @default.
- W4229691029 hasConceptScore W4229691029C51568863 @default.
- W4229691029 hasConceptScore W4229691029C91188154 @default.
- W4229691029 hasConceptScore W4229691029C9652623 @default.
- W4229691029 hasConceptScore W4229691029C99775784 @default.
- W4229691029 hasLocation W42296910291 @default.
- W4229691029 hasOpenAccess W4229691029 @default.
- W4229691029 hasPrimaryLocation W42296910291 @default.
- W4229691029 hasRelatedWork W1179304927 @default.
- W4229691029 hasRelatedWork W1865549704 @default.
- W4229691029 hasRelatedWork W1999167032 @default.
- W4229691029 hasRelatedWork W2002175340 @default.
- W4229691029 hasRelatedWork W2030678449 @default.
- W4229691029 hasRelatedWork W2096594966 @default.
- W4229691029 hasRelatedWork W2105325102 @default.
- W4229691029 hasRelatedWork W3100754559 @default.
- W4229691029 hasRelatedWork W4233089829 @default.
- W4229691029 hasRelatedWork W4234003896 @default.
- W4229691029 hasVolume "180" @default.
- W4229691029 isParatext "false" @default.
- W4229691029 isRetracted "false" @default.
- W4229691029 workType "article" @default.