Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229701164> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4229701164 endingPage "197" @default.
- W4229701164 startingPage "197" @default.
- W4229701164 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> This paper provides a complete generalization of the classic result that the radius of curvature (<i>ρ</i>) of a charged-particle trajectory confined to the equatorial plane of a magnetic dipole is directly proportional to the cube of the particle's equatorial distance (ϖ) from the dipole (i.e. <i>ρ</i> ∝ ϖ<sup>3</sup>). Comparable results are derived for the radii of curvature of all possible planar charged-particle trajectories in an individual static magnetic multipole of arbitrary order <i>m</i> and degree <i>n</i>. Such trajectories arise wherever there exists a plane (or planes) such that the multipole magnetic field is locally perpendicular to this plane (or planes), everywhere apart from possibly at a set of magnetic neutral lines. Therefore planar trajectories exist in the equatorial plane of an axisymmetric (<i>m</i> = 0), or zonal, magnetic multipole, provided <i>n</i> is odd: the radius of curvature varies directly as ϖ<i><sup>n</sup></i><sup>+2</sup>. This result reduces to the classic one in the case of a zonal magnetic dipole (<i>n </i>=1). Planar trajectories exist in 2<i>m</i> meridional planes in the case of the general tesseral (0 < <i>m</i> < <i>n</i>) magnetic multipole. These meridional planes are defined by the 2<i>m</i> roots of the equation cos[<i>m</i>(<i>Φ</i> â <i>Φ<sub>n</sub><sup>m</sup></i>)] = 0, where <i>Φ<sub>n</sub><sup>m</sup></i> = (1/<i>m</i>) arctan (<i>h<sub>n</sub><sup>m</sup></i>/<i>g<sub>n</sub><sup>m</sup></i>); <i>g<sub>n</sub><sup>m</sup></i> and <i>h<sub>n</sub><sup>m</sup></i> denote the spherical harmonic coefficients. Equatorial planar trajectories also exist if (<i>n</i> â <i>m</i>) is odd. The polar axis (<i>θ</i> = 0,<i>π</i>) of a tesseral magnetic multipole is a magnetic neutral line if <i>m </i> > 1. A further 2<i>m</i>(<i>n</i> â <i>m</i>) neutral lines exist at the intersections of the 2<i>m</i> meridional planes with the (<i>n</i> â <i>m</i>) cones defined by the (<i>n</i> â <i>m</i>) roots of the equation <i>P<sub>n</sub><sup>m</sup></i>(cos <i>θ</i>) = 0 in the range 0 < <i>θ</i> < <i>π</i>, where <i>P<sub>n</sub><sup>m</sup></i>(cos <I>θ</I>) denotes the associated Legendre function. If (<i>n</i> â <i>m</i>) is odd, one of these cones coincides with the equator and the magnetic field is then perpendicular to the equator everywhere apart from the 2<i>m</i> equatorial neutral lines. The radius of curvature of an equatorial trajectory is directly proportional to ϖ<i><sup>n</sup></i><sup>+2</sup> and inversely proportional to cos[<i>m</i>(<i>Φ</i> â <i>Φ<sub>n</sub><sup>m</sup></i>)]. Since this last expression vanishes at the 2<i>m</i> equatorial neutral lines, the radius of curvature becomes infinitely large as the particle approaches any one of these neutral lines. The radius of curvature of a meridional trajectory is directly proportional to <i>r<sup>n</sup></i><sup>+2</sup>, where <i>r</i> denotes radial distance from the multipole, and inversely proportional to <i>P<sub>n</sub><sup>m</sup></i>(cos <i>θ</i>)/sin <i>θ</i>;. Hence the radius of curvature becomes infinitely large if the particle approaches the polar magnetic neutral line (<i>m</i> > 1) or any one of the 2<i>m</i>(<i>n</i> â <i>m</i>) neutral lines located at the intersections of the 2<i>m</i> meridional planes with the (<i>n</i> â <i>m</i>) cones. Illustrative particle trajectories, derived by stepwise numerical integration of the exact equations of particle motion, are presented for low-degree (<i>n</i> ≤ 3) magnetic multipoles. These computed particle trajectories clearly demonstrate the "non-adiabatic'' scattering of charged particles at magnetic neutral lines. Brief comments are made on the different regions of phase space defined by regular and irregular trajectories." @default.
- W4229701164 created "2022-05-11" @default.
- W4229701164 creator A5037788439 @default.
- W4229701164 creator A5041215462 @default.
- W4229701164 creator A5049412426 @default.
- W4229701164 creator A5055616832 @default.
- W4229701164 date "1997-01-01" @default.
- W4229701164 modified "2023-09-27" @default.
- W4229701164 title "Planar charged-particle trajectories in multipole magnetic fields" @default.
- W4229701164 doi "https://doi.org/10.1007/s005850050433" @default.
- W4229701164 hasPublicationYear "1997" @default.
- W4229701164 type Work @default.
- W4229701164 citedByCount "0" @default.
- W4229701164 crossrefType "journal-article" @default.
- W4229701164 hasAuthorship W4229701164A5037788439 @default.
- W4229701164 hasAuthorship W4229701164A5041215462 @default.
- W4229701164 hasAuthorship W4229701164A5049412426 @default.
- W4229701164 hasAuthorship W4229701164A5055616832 @default.
- W4229701164 hasBestOaLocation W42297011641 @default.
- W4229701164 hasConcept C115260700 @default.
- W4229701164 hasConcept C121332964 @default.
- W4229701164 hasConcept C145148216 @default.
- W4229701164 hasConcept C169852918 @default.
- W4229701164 hasConcept C173523689 @default.
- W4229701164 hasConcept C17825722 @default.
- W4229701164 hasConcept C178635117 @default.
- W4229701164 hasConcept C184779094 @default.
- W4229701164 hasConcept C195065555 @default.
- W4229701164 hasConcept C2524010 @default.
- W4229701164 hasConcept C33923547 @default.
- W4229701164 hasConcept C35048267 @default.
- W4229701164 hasConcept C38652104 @default.
- W4229701164 hasConcept C41008148 @default.
- W4229701164 hasConcept C52765159 @default.
- W4229701164 hasConcept C62520636 @default.
- W4229701164 hasConceptScore W4229701164C115260700 @default.
- W4229701164 hasConceptScore W4229701164C121332964 @default.
- W4229701164 hasConceptScore W4229701164C145148216 @default.
- W4229701164 hasConceptScore W4229701164C169852918 @default.
- W4229701164 hasConceptScore W4229701164C173523689 @default.
- W4229701164 hasConceptScore W4229701164C17825722 @default.
- W4229701164 hasConceptScore W4229701164C178635117 @default.
- W4229701164 hasConceptScore W4229701164C184779094 @default.
- W4229701164 hasConceptScore W4229701164C195065555 @default.
- W4229701164 hasConceptScore W4229701164C2524010 @default.
- W4229701164 hasConceptScore W4229701164C33923547 @default.
- W4229701164 hasConceptScore W4229701164C35048267 @default.
- W4229701164 hasConceptScore W4229701164C38652104 @default.
- W4229701164 hasConceptScore W4229701164C41008148 @default.
- W4229701164 hasConceptScore W4229701164C52765159 @default.
- W4229701164 hasConceptScore W4229701164C62520636 @default.
- W4229701164 hasIssue "2" @default.
- W4229701164 hasLocation W42297011641 @default.
- W4229701164 hasLocation W42297011642 @default.
- W4229701164 hasLocation W42297011643 @default.
- W4229701164 hasLocation W42297011644 @default.
- W4229701164 hasOpenAccess W4229701164 @default.
- W4229701164 hasPrimaryLocation W42297011641 @default.
- W4229701164 hasRelatedWork W1647128494 @default.
- W4229701164 hasRelatedWork W1975846489 @default.
- W4229701164 hasRelatedWork W2010400964 @default.
- W4229701164 hasRelatedWork W2064127059 @default.
- W4229701164 hasRelatedWork W2065726486 @default.
- W4229701164 hasRelatedWork W215288567 @default.
- W4229701164 hasRelatedWork W2315531116 @default.
- W4229701164 hasRelatedWork W2917379685 @default.
- W4229701164 hasRelatedWork W4236410123 @default.
- W4229701164 hasRelatedWork W269833576 @default.
- W4229701164 hasVolume "15" @default.
- W4229701164 isParatext "false" @default.
- W4229701164 isRetracted "false" @default.
- W4229701164 workType "article" @default.