Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229805097> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4229805097 endingPage "690" @default.
- W4229805097 startingPage "689" @default.
- W4229805097 abstract "Magnetic skyrmion is a topologically protected quantum spin texture. It is so stable and expected to be utilized for future memory devices featuring ultralow energy consumption. However, influences of structural defects in real materials remain to be elucidated in such practical applications. Since magnetic skyrmion is a nano‐scale magnetic structure, visualization techniques with very high spatial resolution are essential to investigate such influences of nano‐scale structural defects, such as edges, dislocations and grain boundaries on magnetic skyrmion. Here, we present the direct visualization of magnetic skyrmion lattice in a thin film specimen of FeGe 1‐x Si x by aberration‐corrected differential phase‐contrast scanning transmission electron microscopy (DPC‐STEM) taking advantages of a segmented annular all‐field (SAAF) detector [1] connected via photomultiplier tubes with a high‐speed numerical processer. Polycrystalline FeGe 1‐x Si x was grown from FeGe 0.8 Si 0.2 ingot by conventional solid‐state reaction annealed at 900 °C for 100 hours. A thin film specimen was fabricated from a bulk crystal by using an Ion Slicer (EM‐9100IS, JEOL, Ltd.). For DPC STEM observations, we used a STEM (JEM‐2100F, JEOL, Ltd.) equipped with a probe‐forming aberration corrector (CEOS, GmbH) and a Schottky field emission gun operated at 200 kV. This microscope was equipped with a SAAF detector. We used a double‐tilt liquid‐nitrogen cooling specimen holder (Model 636, Gatan, Inc.). Analysis of DPC STEM images was done either online by using a direct reconstruction system [2] implemented as an application of LabView software (National Instruments, Inc.) running on Windows or offline by using a program written in Digital Micrograph Scripting language (Gatan, Inc.). Figure 1a shows a schematic diagram of electron‐optical system of DPC STEM used in the present study. In‐plane magnetization can be mapped by analyzing the Lorentz deflection of electron beam using segmented annular detector as schematically shown in Fig. 1b. As shown in Fig. 2a, a set of four images is selected from sixteen images obtained by the segmented detector. Such images are first converted into two images corresponding to a horizontal and a vertical component image of Lorentz deflection (Fig. 2b). Finally, the two Lorentz deflection images are analyzed to show a in‐plane magnetization vector, intensity, and magnetic helicity images as shown in Fig. 2c. Figure 3 demonstrates the live reconstruction of in‐plane magnetic field and intensity of a magnetic skyrmion lattice. A unique structural relaxation mechanism in a magnetic Skyrmion domain boundary core, revealed by the technique for the first time [3], will be presented in detail." @default.
- W4229805097 created "2022-05-11" @default.
- W4229805097 creator A5006865346 @default.
- W4229805097 creator A5007703129 @default.
- W4229805097 creator A5052365998 @default.
- W4229805097 creator A5055622569 @default.
- W4229805097 creator A5065977516 @default.
- W4229805097 creator A5076675370 @default.
- W4229805097 date "2016-12-20" @default.
- W4229805097 modified "2023-10-16" @default.
- W4229805097 title "Direct Visualization of Magnetic Skyrmion by Aberration-Corrected Differential Phase Contrast Scanning Transmission Electron Microscopy" @default.
- W4229805097 cites W2114407360 @default.
- W4229805097 cites W2275710659 @default.
- W4229805097 cites W647284886 @default.
- W4229805097 doi "https://doi.org/10.1002/9783527808465.emc2016.5876" @default.
- W4229805097 hasPublicationYear "2016" @default.
- W4229805097 type Work @default.
- W4229805097 citedByCount "0" @default.
- W4229805097 crossrefType "other" @default.
- W4229805097 hasAuthorship W4229805097A5006865346 @default.
- W4229805097 hasAuthorship W4229805097A5007703129 @default.
- W4229805097 hasAuthorship W4229805097A5052365998 @default.
- W4229805097 hasAuthorship W4229805097A5055622569 @default.
- W4229805097 hasAuthorship W4229805097A5065977516 @default.
- W4229805097 hasAuthorship W4229805097A5076675370 @default.
- W4229805097 hasBestOaLocation W42298050971 @default.
- W4229805097 hasConcept C120665830 @default.
- W4229805097 hasConcept C121332964 @default.
- W4229805097 hasConcept C146088050 @default.
- W4229805097 hasConcept C171250308 @default.
- W4229805097 hasConcept C192562407 @default.
- W4229805097 hasConcept C193016168 @default.
- W4229805097 hasConcept C49040817 @default.
- W4229805097 hasConceptScore W4229805097C120665830 @default.
- W4229805097 hasConceptScore W4229805097C121332964 @default.
- W4229805097 hasConceptScore W4229805097C146088050 @default.
- W4229805097 hasConceptScore W4229805097C171250308 @default.
- W4229805097 hasConceptScore W4229805097C192562407 @default.
- W4229805097 hasConceptScore W4229805097C193016168 @default.
- W4229805097 hasConceptScore W4229805097C49040817 @default.
- W4229805097 hasLocation W42298050971 @default.
- W4229805097 hasOpenAccess W4229805097 @default.
- W4229805097 hasPrimaryLocation W42298050971 @default.
- W4229805097 hasRelatedWork W2001556419 @default.
- W4229805097 hasRelatedWork W2032570366 @default.
- W4229805097 hasRelatedWork W2058676402 @default.
- W4229805097 hasRelatedWork W2061892615 @default.
- W4229805097 hasRelatedWork W2090919632 @default.
- W4229805097 hasRelatedWork W2209351154 @default.
- W4229805097 hasRelatedWork W2327600301 @default.
- W4229805097 hasRelatedWork W2329285141 @default.
- W4229805097 hasRelatedWork W2902546961 @default.
- W4229805097 hasRelatedWork W4313653414 @default.
- W4229805097 isParatext "false" @default.
- W4229805097 isRetracted "false" @default.
- W4229805097 workType "other" @default.